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What is this all about & why do we care?



Probability Model

there are n samples in d dimensional reals R?
samples are independently generated from an unknown density f

that belongs to the space of all possible densities, i.e., L4

y
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For given sample size n construct an optimally smoothed
Density Estimate (multidimensional histogram for eg.)

f’n(x;le c e 7X’n,) . Rd X (Rd)n — R




Henry Scheffé’'s ldentity

1.1 The L; setting

We start by bringing forth some definitions and results found in [1] which we
shall need later. Consider a B(R)-measurable random variable X : Q — R? with
density f and suppose that g : R¢ — R is some other density. The L; distance
between f and g may be defined as

|f —gl.
Rd

The distance has the nice property of being easily interpreted, and is connected
to the total variation by Scheffé’s Identity:

[i-[a|=3 [ 1r-al

sup
AeB(R?)



https://en.wikipedia.org/wiki/Henry_Scheff%C3%A9
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We want a Computationally Efficient Estimator with UPG

What is of interest to us is the construction of an efficient estimator f,, in the
computational sense and deriving a universal upper bound on the expected L
distance to f. We say that the estimator f,, is additive if for some measurable
function K : RY x R? — R, f,, can be written in the form

1 n
= ;K(a:;Xi).

Any such f, is called regular if Vz : E|K(x; X)| < co. Consider a multivariate
density histogram h,, with a finite number of non-intersecting and non-empty
cells with finite volume P4, ..., P,,. The density may be written as

n n

_ 1 = ]I[acEP]]I[X ep 1
h,(z; X4,... — K(z; X;).
(x 1 n Z Z Volume n Z (x )

i=1 =1 =1




Want: A histogram estimate from data (empirical measure)

Since K is the sum of a finite number of measurable functions, we conclude
that h,, is additive. Regularity follows from observing that for any = € R?, the
following holds:

1
K(z; X)| < :
B s )| = e volume(P;)

For a i.i.d sample (X1,...,X,) we define the empirical measure u, as

1 n
pn(A) = pn(4; X1, .., Xp) o= — Y Iixear,
=1



Yatracos Class & Minimum Distance Estimate (MDE)

Consider two densities fn. 0, fnw : R? — R. We define a Scheffé set as the set

A(fn,07 fn,w) = {33 : fn,g(m) > fn,w(:c)}.

Now, suppose that we have a finite set of estimate indices 8 € ©. The set of all
distinct Scheffé sets of © is denoted by

'A@ = {Afn,e,fn,w : 0 # w}
and is known as the Yatracos class of ©. Furthermore, assume that for any
0 € ©, fp ¢ represents an estimate of some unknown but fixed density f. Define
Ay as the supremum of the absolute distance between f, ¢ and p,, over Ag:

/fno—un ‘

g := sup
A€eAo



https://www.wikidata.org/wiki/Q102189177

The Minimum Distance Estimate (MDE)

The minimum distance estimate 1, (MDE) within the set of estimators in ©
generating Ag is defined to be the estimate minimising the above distance:

Yn = fr, k= minargmin A,;.
1€l,....m



Shatter Coefficients and Vapnik-Chervonenkis Dimension

We shall need some more tools to formally deal with partitions of R%. Let A
denote a class of subsets A C R%. We let S4(n) denote the shattering coefficient
of A depending on n, and it is defined by

8 = Aﬂ N 7% :AEA )
A(n) (ml,,,,glnaj)é(Rd)nH {11,‘1 T } }|

Intuitively, S4(n) describes the largest amount of unique ways the class could
shatter or split a set of n points residing in R?. The Vapnik-Chervonenkis di-
mension V4 of A is defined as the largest integer n such that S4(n) = 2". Thus
V4 represents the largest number of points which A can fully shatter. Vapnik
and Chervonenkis (1971) provided the following theorem which relates shatter-
ing coefficients to an i.i.d sample (X, ..., X,) coming from a distribution x and
its corresponding empirical measure:

([3], Theorem 12.5): Given a class of sets A, a sample (X,...,X,) with
common probability distribution x and any € > 0, the following inequality holds:

lP’(sup |un(A) — p(A)| > e) < SSA(n)e_"fz/sz.
AcA



Lugosi & Nobel (‘91) generazile VC dimension to Partitions

Let 7 denote a finite collection of non-intersecting B(R%)-measurable subsets
A C R? such that | s A= R¢. We are interested in the properties of certain
families of partitions, and as such let A denote any family of possibly infinitely
many partitions m. Furthermore, let

m(A) := sup|7|
TeEA

denote the supremum over A with respect to the number of cells of any 7. We
define and measure the complexity of A by its ability to split a number of points;

let z1,...,2, € R* and B = {x1,...,2,}. We define A(A, B) as the number of E— ‘ |

unique ways A’s partitions may split B: I

A(A,B) = [{{A1NB,...,A,NB} : 7 ={A1,..., A} € A}].

The growth function of A is defined as

A*(A,n) = max A(A, B).

B={z,,...,z, }CR4


http://www.econ.upf.edu/~lugosi/
https://nobel.web.unc.edu/

Lugosi & Nobel (‘91) generazile VC dimension to Partitions
TODAY in Lisbon, Portugal and IRL “mathematical cuddle”
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http://www.econ.upf.edu/~lugosi/
https://nobel.web.unc.edu/

Concentration ineq: Empirical deviation from true measure

In the context of histogram estimators whose cells depend on the data, if we
view the rules for constructing cells as fixed and A as the family of possible
partitions 7 constructed using the rules, A*(A,n) measures in some sense the
estimator’s reliance on individual points versus a set of points, and is therefore
of importance. This can in turn be related to the usual smoothing problem
in which one chooses some bandwidth which affects how an estimator at any
point z € R? relies on nearby sample points. The following lemma bridges the
concept of growth functions and the empirical measure’s performance over A.

([2], Lemma 1): Let A be any family of partitions of R?. Let € > 0 and n > 1.
Then the following holds:

P(Sup > [un(A4) = u(A)| > ) < 4A%(A, 2m)2m W /2,
TEA Acn



Almost sure convergence of any partitioning scheme

A corollary of this is that, for a given a sequence of i.i.d vectors X1, Xs,... with
common distribution p and a sequence of partition families A;, As,..., if we
put certain limitations on how quickly the two sequences {A*(A,,n)}52; and
{m(A,)}>° ; are allowed to grow, then we can ensure almost sure convergence

of the empirical measure u,, to u over A,:

([2], Corollary 1): Consider the setup described above. As n — oo, if
n~tm(A,) — 0 and n~'In(A*(A,,n))) — 0, then it is true that

( lim sup Y  |un(A) — p(A)| = o) = 1.

n— 00
TEA Aer



Regular Paving: For any sample size in any dimension d.
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Figure: One possible sequence of splits achieving the rightmost RP.




Mapped Regular Paving

Suppose that p is some RP and let Y be some non-empty set.
A Y-mapped regular paving is a map f : V(s) — Y.

p

/<\(' e

(pLL,0)  (pLR,1)

(XL, 1)

(pr.v 2)
(XpLL, 0)

Figure: Simple Z-MRP consisting of two splits.



(a) An SRP tree and its constituents.

Statistical Regular Paving Histogram

pL PR

pLL pLR

(b) An SRP histogram fn, s.



Collator Regular Paving

SRP sy with root box x,

fn.s5(pL)

Hen (pL)

SRP sg with root box x, CRP ¢
s (PLR) (Fn.s0 (PLR))
ten(pLR) Hen(pLR)
fn.s(PR) (#n.s0 (R))
Hon (PR) en (pR)
fn.sq(pLL) (fr.se (PLL))
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(b) Collate another SRP sy onto CRP c.



Sparse Regular Paving = Sparse Binary Tree

p p
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Figure: Sparse tree representation of Z-MRP with identity element
e =0.



Ari t h m eti C W i t h S p a rse B i n a ry Tre e S (eg. Statistical regular pavings to analyze massive data of aircraft

trajectories, Gloria Teng, Kenneth Kuhn and Raazesh Sainudiin, Journal of Aerospace Computing. Information, and Communication, Vol. 9, No. 1. pp. 14-25, doi: 10.2514/1.1010015, 2012)

SEE: http:/lamastex.org/preprints/AAIASubPavinaATC.pos
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Figure 3.4: Operation on two sparse Z-MRPs with operation + and neutral
element e = 0. Each box in the result gets augmented with the sum of the
values of the boxes that overlaps with it in s(!) and s(?.


http://arc.aiaa.org/doi/abs/10.2514/1.I010015
http://lamastex.org/preprints/AAIASubPavingATC.ps

Statistically Equivalent Block Random PQ Markov chain

ALGORITHM 1: SEBTreeMC(s, #,77)

input

SRP,

output

initialize:

: s, initial SRP with root node p,

z = (z1,z2,...,Tn), a data burst of size n,
# : LV(s) — R, a priority function of counts,
#, maximum value of #(pv) € LV (s) for any splittable leaf node in the final

m, maximum number of leaves in the final SRP.

: a sequence of SRP states [s(0),s(1),...,s(T")] such that LV (s(T)) =0 or

#(pv) < # Vpv € LV (s(T)) or |L(s(T))| =m .

x, « x, make x, such that U'z; C z, if # domain knowledge or historical
data,

8 « xp, specify the root box of s,

8 + [s]

while LV (s) #0 & |L(s)| <™ & max,, ;v () #(pv) > # do

end

pv + random sample (argma.x #(pv) // sample uniformly from nodes with

pvELYV (s)
largest #
s +— s with node pv split // split the sampled node and update s
s.append(s) // append the new SRP state with an additional split




What do we provide and the sources of ideas and tools?



Software Tool
SparkDensityTree

Sandstedt, A., Graner, J., Wiklund, T., & Sainudiin, R. (2023).

SparkDensity Tree: An Apache Spark Library for Scalable Density
Estimation, Anomaly Detection and Conditional Density Regression with
Universal Performance Guarantees Using Distributed Sparse Binary Trees
(Version 1.0) [Computer software)].

https://qithub.com/lamastex/SparkDensityTree
https://qithub.com/lamastex/SparkDensity Tree-examples



https://github.com/lamastex/SparkDensityTree
https://github.com/lamastex/SparkDensityTree-examples

SparkDensityTree’s Mathematical Sources

Built on the ideas of several white papers inspired by the following fields:
- Constructive Mathematics

- Set-Valued and Interval Analysis for Epistemologically Valid Machine Interval Experiments
- Applied Interval Analysis for Autonomous Control Systems (eg. Luc Jaulin’s Lab)
- Distributed Algorithms and Optimization

Wh|te Papers:
Mapped Regular Pavings
- Posterior Expectation of Reqularly Paved Random Histograms
- An Auto-Validating, Trans-Dimensional, Universal Rejection Sampler for Locally Lipschitz
Arithmetical Expressions
- Minimum Distance Histograms with Universal Performance Guarantees (UPG)
- Scalable Multivariate Histograms
- Scalable Algorithms in Nonparametric Computational Statistics,
m Johannes Graner’s MSc thesis
- Scalable Nonparametric L1 Density Estimation via Sparse Subtree Partitioning,
m Axel Sandstedt’'s MSc thesis (to be released)



https://plato.stanford.edu/entries/mathematics-constructive/
https://en.wikipedia.org/wiki/Set-valued_function
https://encyclopediaofmath.org/wiki/Interval_analysis
https://books.google.com/books/about/Machine_Interval_Experiments.html?id=0dFUAAAAYAAJ
https://www.ensta-bretagne.fr/jaulin/
https://stanford.edu/~rezab/dao/
https://interval.louisiana.edu/reliable-computing-journal/volume-16/reliable-computing-16-pp-252-282.pdf
http://lamastex.org/preprints/SubPavingMCMC.pdf
https://interval.louisiana.edu/reliable-computing-journal/volume-18/reliable-computing-18-pp-015-054.pdf
https://interval.louisiana.edu/reliable-computing-journal/volume-18/reliable-computing-18-pp-015-054.pdf
https://link.springer.com/article/10.1007/s42081-019-00054-y
http://lamastex.org/preprints/20180506_SparkDensityTree.pdf
https://uu.diva-portal.org/smash/record.jsf?pid=diva2%3A1711540&dswid=9067

What is it good for?



SparkDensityTree — A Software Tool

- Constructs density estimates in a distributed manner
- Provide a Sparse Tree based Histogram with UPG
- To provide the user with several tools for use in
O  Anomaly detection via
B generalised tail probabilities and
B highest density level-sets

O  Conditional density regression
m Predictive sampling from training data

o Arithmetic over an algebra of sparse trees that is dense in C
m by Stone-Weierstrass Theorem



https://en.wikipedia.org/wiki/Stone%E2%80%93Weierstrass_theorem

Estimate of a Mixture of Gaussians density (2D Cross)

Using 100GB of samples from
a Gaussian Mixture on a
Cross of two lines in 2D,

We first construct an

optimally smoothed

joint density estimate as

a histogram from the space of
sparse binary trees, as shown:




Beta-Weighted LineMixtures of Scaled Gaussian locations

case class LineMixture(start : Array[Double], end : Array[Double], numMixtures : Int,

alpha : Double, beta : Double, scales : Array[Double])

@param lineWeights - positive weights corresponding to non-normalized probabilities

case class MixtureDistribution(lineMixtures : Array[LineMixture], lineWeights : Array[Double])
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Dimensionality Reduction Methods allow projections even from
infinite dimensional functional data

Precipitati (mm)
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Regression Analysis

- What is regression, care? [Analyze f_(X,|X,) with dimension d=2]

- How to do regression using the joint density estimate f (X.,X,)?

- We can check for anomalies, points found in low probability regions

- First, we may check how any specific set of variables are concen.

- We can predict outcomes of needed variables C given a set of fixed variables
D, where C and D are mutually exclusive subsets of all observed variables in
[d] :={1,2,..,d} of the training and validation datasets.

- Note that E(X,, | X,) is not good enough for prediction, instead we can sample
from actual estimate of the conditional density f (X. | X)) from the optimally
smoothed joint density estimate f (X,,X,,...,.X )



Regression Analysis

Thus we can analyze the relationship between variables and their distribution
Can help us in finding anomalies

Generate new reasonable data from underlying distribution

A Real Dataset FX-1 Minute Data over many decades! (but we simulate data here)

C A Not Secure | histdata.com For Which Pairs')

listData.co

jFree Forex Historical Data

- SGD/JPY, USD/HKD, USD/NOK, USD/TRY, XAU/AUD, AUD/CHF, AUX/AUD, EUR/HUF,
Download Free Forex Data Download by FTP or SFTP EUR/PLN, FRX/EUR, HKX/HKD, NZD/CHF, SPX/USD, USD/HUF, USD/PLN, USD/ZAR,
XAU/CHF, ZAR/JPY, BCO/USD, ETX/EUR, EUR/CZK, EUR/SEK, GBP/AUD, GBP/NZD, JPX/JPY,
UDX/USD, USD/CZK, USD/SEK, WTI/USD, XAU/EUR, AUD/NZD, CAD/CHF, EUR/DKK,
EUR/NOK, EUR/TRY, GBP/CAD, NSX/USD, UKX/GBP, USD/DKK, USD/SGD, XAG/USD,
XAU/GBP

»® Welcome To HistData.com!



Marginal Densities from Integrating Joint Density

- See how a certain set of variables are concentrated along a subset of {1,...,d}.
- Let us see examples of the marginal X, and marginal X, for the 2D-Cross



n(x)

fi

Marginal density of x, from joint density f (X,,X,) (via sparse

trees)




n(x)

£

Marginal density of x2 from joint density f (via sparse tree ops)




Conditional Densities

005 t 0.05

0.04 3 L 0.04

[T 003 & T 0.03

70025 4 002

T 0.01 H 001

7 0.00 =2l 0.00
10 10

f_n(X1,x2)



f_n(x|X2=3)

Conditional Densities

- Normalizing the slice gives us a new probability distribution at the fixed point




Conditional Density Estimate from Joint Density Estimate

t 0.05 [ 0.05
I 0.04 S - 0.04
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f_n(x | X1=3)

Conditional Densities




Conditional Densities

- Can be done for any dimension, any set of fixed axes
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90%-highest density region
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99.9%-highest density region
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Anomaly Detection

100 data points sampled 1000 data points sampled
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Anomaly Detection

10000 data points sampled

1.0
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Highest density level-sets / Tail Prob for Anomaly Detection

- We generate a sample of 10"6 points to see how what proportion of points fall

into each region:

Wanted Probability
0.90

0.95

0.99

0.999

Actual Probability

0.900002

0.950002

0.990002

0.999003

Proportion within region

0.900065

0.949944

0.989812

0.998907



Sampling from the estimator of the 2D Cross density

- 10000 data points




10 dimensional mixture conditional sampling

- 2-line 10 dimensional cross:
- Line1:(0,...,0)->(1, ..., 1)
- Line2:(1,0,1,0,...,0)->(0,1,0,1, ..., 1)
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fn(X21X41X5 l Xl =0aX3 = 01X6 = 01X7 =03X8 = OaX.() =03X10 = 0)
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n (X2, X4, X5 | X1 = 0.825, X3 = 0.825, Xg = 0.825, X7 = 0.825, X5 = 0.825, X9 = 0.825, X;9 = 0.825)
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fn(X2, X4, X5 | X1 =0.825, X3 = 0.825, X = 0.825, X7 = 0.825, X5 = 0.825, X9 = 0.825, X;9 = 0.825)
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Results

- 256 cores, 480GB memory (16 c4.4xlarge workers)
- 70/30 split between training data and hold-out data
- For 2 dimensions, n =62,500,000,000
- For 10 dimensions, n = 12,500,000,000

Distribution  Dimensions sample size finestResDepth | maxLeafCount P total time (h:m)
Uniform 2 ITB 60 2 100000 07:11
Uniform 10 ITB 60 6 100000 00:45

Cross Mixture 2 1ITB 44 3 100000 04:42
Cross Mixture 10 ITB 60 5 20000 00:46




Scalability

- We have linear scaling with doubling of worker cores

- Again, 70/30 split between training data and hold-out data
n =6,250,000,000
- For 10 dimensions, n = 1,250,000,000

- For 2 dimensions,

Distribution  Dimensions sample size | num cores | countLimit | total time {h:m:s)
Uniform 2 100GB 64 10000 01:30:08
Uniform 2 100GB 128 10000 00:49:34
Uniform 2 100GB 256 10000 00:28:23

Cross Mixture 2 100GB 64 10000 01:43:57
Cross Mixture 2 100GB 128 10000 01:00:13
Cross Mixture 2 100GB 256 10000 00:37:26




Breakdown of 1TB timings

Distribution  dim Rect labelTrain | maxLabel | mergeRDD | labelValid+getMDE
partitions | partitions | partitions | partitions partitions
Uniform 2 00:06:47 04:08:00 00:03:25 02:53:00 00:16:05
4096 4096 4096 16384 4006
Uniform 10 00:06:34 00:15:40 00:00:45 00:19:39 00:02:41
8192 8192 8192 8192 4096
Cross Mixture 2 00:07:13 01:35:00 00:03:01 02:22:00 00:34:30
16384 16384 16384 16384 4096
Cross Mixture 10 00:04:22 00:13:59 00:00:43 00:21:03 00:06:10*
8192 8192 8192 8192 4096




How do we do it?



Construction of an estimate

- Stage 1: Obtain Box hull that contains all the datapoints dimension-wise:
O [[min {Xi,k}i=1 . max{xi’k}i=1 I k=1,...,d}], a pure map-reduce step

..........

- Stage 2: Leaf Address/Label: Map each data point to its binary leaf address

o This is the (precision-loss-able) data compression stage: finestResDepth and maxLeafCount

- Stage 3: Merging to finest histogram considerable due to driver RAM budget

o This is specified by countLimit, giving the maximum number of datapoints in any leaf of the
coarsest histogram tree to be further coarsened in driver to find the optimal MDE histogram

- Stage 4: Search for MDE on a Markov chain’s path of coarsening histograms
o Using collator regular pavings that are broadcasted over workers for distributed validation
o Universal Performance guarantees are given by the SEB-PQ-Markov chain and the
Vapnik-Chervonenkis dimension of the Yatracos Class of Scheffe sets of the sparse tree
histogram along the coarsening path of the chain.



m Note that spllttmg can be distributedly, split everything in
any order down to +#

m Sparse representation allows us to split extremely refined,
number of leaves bounded by number of points



m Bottom-up approach

m Split everything down to some very large depth

m Backtrack to a valid output of SEBTreeMC by merging
cells up to the count limit




The whole method can be described in four seperate stages:
m Retrieve Hull of Xi,..., X,

m Find leaf labels of Xi,..., X, at depth d, get count of
each label

m Backtrack from depth d to valid output from SEBTreeMC
m Find the best performing estimate along the path
We focus on optimising distributed backtracking.



m Abstracts a lot of distributed computing details
m Machines are assigned partitions of data

m One machine is the driver, assign tasks to workers and so
on.

m Other machines are workers which perform tasks and
communicates to other machines in strict ways

m We can control what data gets assigned to what partition

using Partitioners
1

m Less communication needed is good



m Issue: Previous backtracking does not account for data
layout; we might need to merge two points on different
machines: leads more communication between machines

m Solution: Find large subtrees of data and assign them to



Rough outline is as follows:

m (1) Sample data from partitions, each leaf /; is assigned
weight w;

m (2) Sort the data accoring to the left-right ordering
m (3) Find large subtrees s; according to a weight limit
m (4) Map all sj to a new of partitions p1, ..., pm

m (5) map each leaf /; to the same partition as the closest
subtree s; generated



m Machine 1 (partition 1) contain odd leaves

m Machine 2 (partition 2) contain even leaves

Figure: Layout of data partitions between machine 1 and 2.




m Leaf distribution at depth 4.

Figure: Tree layout of data between machines.
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m Sample i, i, Iy, l11, h3 from partition 1 — weight =
m Sample b, Iy, 4 from partition 2 — weight =

Figure: Leaf samples from the two machines..



m Find large nonintersecting subtrees with respect to weight
from sample

m Same idea as backtracking
m O(nlog(n)) of input

m record the deepest subtree



Figure: Generated maximal subtrees using weight limit w = 8.0.



Map each subtree to some machine is some way to distribute
the weight among machines:

Trees Left Partition 1 Partition 2
(s1,7.46), (s2,4.26), (s3,4.26) 0 0
(52,4.26), (s3,4.26) (s1,7.46) 0
(53, 426) (51, 746) (52, 426)
0 (51,7.46) | (s2,4.26),(s3,4.26)

Table: Assignment of generated subtrees to partitions.




m (1) Find the two closest subtrees of leaf /; to the left and
the right.

m (2) /; is mapped to same partition the deepest subtree
subtree is mapped to.

m (3) When leaf map is done, 1 all-to-all communication to
send all leaves to correct machines.

Partition 1 | {h,..., he}
Partition 2 | {h,..., g}

Table: Assignment of leaves to partitions.



m Now all machines can locally do its backtracking up to
largest recorded depth among trees

m When all merging is done locally, if any more merging
need to take place, signal driver

m Do any last merges on the driver



Pros

- Constructed specifically for the distributed setting in mind

- Works for any continuous probability distribution (fin L)

- Works for any number of dimensions

- Very nice regression tools once you have constructed an estimate



Cons

- Hard to generate a density estimate (f_n of f), many parameters for the user

to tune
- The construction can be seen as a four-stage process which makes the

window for errors large

Some ideas to further improve performance in computational efficiency
- 70% in garbage collection of JVM process
- Modified algorithmic improvements



Thanks for your attention!



