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What is this all about & why do we care?



Probability Model



For given sample size n construct an optimally smoothed
Density Estimate (multidimensional histogram for eg.)



Henry Scheffé’s Identity

https://en.wikipedia.org/wiki/Henry_Scheff%C3%A9


Henry Scheffé’s Identity

https://en.wikipedia.org/wiki/Henry_Scheff%C3%A9


Henry Scheffé’s Identity

https://en.wikipedia.org/wiki/Henry_Scheff%C3%A9


We want a Computationally Efficient Estimator with UPG



Want: A histogram estimate from data (empirical measure)



Yatracos Class & Minimum Distance Estimate (MDE)

https://www.wikidata.org/wiki/Q102189177


The Minimum Distance Estimate (MDE)



Shatter Coefficients and Vapnik-Chervonenkis Dimension



Lugosi & Nobel (‘91) generazile VC dimension to Partitions

http://www.econ.upf.edu/~lugosi/
https://nobel.web.unc.edu/


Lugosi & Nobel (‘91) generazile VC dimension to Partitions
     TODAY in Lisbon, Portugal and IRL “mathematical cuddle”

http://www.econ.upf.edu/~lugosi/
https://nobel.web.unc.edu/


Concentration ineq: Empirical deviation from true measure



Almost sure convergence of any partitioning scheme



Regular Paving: For any sample size in any dimension d.



Mapped Regular Paving



Statistical Regular Paving Histogram



Collator Regular Paving



Sparse Regular Paving = Sparse Binary Tree



Arithmetic with Sparse Binary Trees (eg. Statistical regular pavings to analyze massive data of aircraft 

trajectories, Gloria Teng, Kenneth Kuhn and Raazesh Sainudiin, Journal of Aerospace Computing, Information, and Communication, Vol. 9, No. 1, pp. 14-25, doi: 10.2514/1.I010015, 2012).
SEE: http://lamastex.org/preprints/AAIASubPavingATC.ps 

http://arc.aiaa.org/doi/abs/10.2514/1.I010015
http://lamastex.org/preprints/AAIASubPavingATC.ps


Statistically Equivalent Block Random PQ Markov chain



What do we provide and the sources of ideas and tools?



Software Tool
SparkDensityTree

Sandstedt, A., Graner, J., Wiklund, T., & Sainudiin, R. (2023). 

SparkDensityTree: An Apache Spark Library for Scalable Density 
Estimation, Anomaly Detection and Conditional Density Regression with 

Universal Performance Guarantees Using Distributed Sparse Binary Trees 
(Version 1.0) [Computer software]. 

https://github.com/lamastex/SparkDensityTree 
https://github.com/lamastex/SparkDensityTree-examples 

https://github.com/lamastex/SparkDensityTree
https://github.com/lamastex/SparkDensityTree-examples


SparkDensityTree’s Mathematical Sources

- Built on the ideas of several white papers inspired by the following fields:
- Constructive Mathematics
- Set-Valued and Interval Analysis for Epistemologically Valid Machine Interval Experiments 
- Applied Interval Analysis for Autonomous Control Systems (eg. Luc Jaulin’s Lab)
- Distributed Algorithms and Optimization 

- White Papers: 
- Mapped Regular Pavings
- Posterior Expectation of Regularly Paved Random Histograms
- An Auto-Validating, Trans-Dimensional, Universal Rejection Sampler for Locally Lipschitz 

Arithmetical Expressions
- Minimum Distance Histograms with Universal Performance Guarantees (UPG)
- Scalable Multivariate Histograms
- Scalable Algorithms in Nonparametric Computational Statistics, 

■ Johannes Graner’s MSc thesis
- Scalable Nonparametric L1 Density Estimation via Sparse Subtree Partitioning, 

■ Axel Sandstedt’s MSc thesis (to be released)

https://plato.stanford.edu/entries/mathematics-constructive/
https://en.wikipedia.org/wiki/Set-valued_function
https://encyclopediaofmath.org/wiki/Interval_analysis
https://books.google.com/books/about/Machine_Interval_Experiments.html?id=0dFUAAAAYAAJ
https://www.ensta-bretagne.fr/jaulin/
https://stanford.edu/~rezab/dao/
https://interval.louisiana.edu/reliable-computing-journal/volume-16/reliable-computing-16-pp-252-282.pdf
http://lamastex.org/preprints/SubPavingMCMC.pdf
https://interval.louisiana.edu/reliable-computing-journal/volume-18/reliable-computing-18-pp-015-054.pdf
https://interval.louisiana.edu/reliable-computing-journal/volume-18/reliable-computing-18-pp-015-054.pdf
https://link.springer.com/article/10.1007/s42081-019-00054-y
http://lamastex.org/preprints/20180506_SparkDensityTree.pdf
https://uu.diva-portal.org/smash/record.jsf?pid=diva2%3A1711540&dswid=9067


What is it good for?



SparkDensityTree – A Software Tool

- Constructs density estimates in a distributed manner
- Provide a Sparse Tree based Histogram with UPG
- To provide the user with several tools for use in 

○ Anomaly detection via 

■ generalised tail probabilities and 

■ highest density level-sets

○ Conditional density regression 
■ Predictive sampling from training data

○ Arithmetic over an algebra of sparse trees that is dense in C0 
■ by Stone-Weierstrass Theorem

https://en.wikipedia.org/wiki/Stone%E2%80%93Weierstrass_theorem


Estimate of a Mixture of Gaussians density (2D Cross)

Using 100GB of samples from 
a Gaussian Mixture on a 
Cross of two lines in 2D, 
We first construct an 
optimally smoothed  
joint density estimate as 
a histogram from the space of 
sparse binary trees, as shown:



Beta-Weighted LineMixtures of Scaled Gaussian locations
case class LineMixture(start : Array[Double], end : Array[Double], numMixtures : Int, 

     alpha : Double, beta : Double, scales : Array[Double])

@param lineWeights - positive weights corresponding to non-normalized probabilities

case class MixtureDistribution(lineMixtures : Array[LineMixture], lineWeights : Array[Double])



Dimensionality Reduction Methods allow projections even from 
infinite dimensional functional data



Regression Analysis

- What is regression, care? [Analyze fn(X2|X1) with dimension d=2]
- How to do regression using the joint density estimate fn(X1,X2)?
- We can check for anomalies, points found in low probability regions
- First, we may check how any specific set of variables are concen.
- We can predict outcomes of needed variables C given a set of fixed variables 

D, where C and D are mutually exclusive subsets of all observed variables in 
[d] := {1,2,..,d} of the training and validation datasets.

- Note that E(XC | XD) is not good enough for prediction, instead we can sample 
from actual estimate of the conditional density fn(XC | XD) from the optimally 
smoothed joint density estimate fn(X1,X2,...,Xn)



Regression Analysis

- Thus we can analyze the relationship between variables and their distribution
- Can help us in finding anomalies
- Generate new reasonable data from underlying distribution
- A Real Dataset FX-1 Minute Data over many decades! (but we simulate data here)



Marginal Densities from Integrating Joint Density

- See how a certain set of variables are concentrated along a subset of {1,...,d}.
- Let us see examples of the marginal X1 and marginal X2 for the 2D-Cross



Marginal density of x1 from joint density fn(X1,X2) (via sparse 
trees)



Marginal density of x2 from joint density f (via sparse tree ops)



Conditional Densities



Conditional Densities

- Normalizing the slice gives us a new probability distribution at the fixed point



Conditional Density Estimate from Joint Density Estimate



Conditional Densities



Conditional Densities

- Can be done for any dimension, any set of fixed axes



50%-highest density region



90%-highest density region



99.9%-highest density region



Anomaly Detection

100 data points sampled 1000 data points sampled



Anomaly Detection

10000 data points sampled 100000 data points sampled



Highest density level-sets / Tail Prob for Anomaly Detection

- We generate a sample of 10^6 points to see how what proportion of points fall 
into each region:

Wanted Probability Actual Probability Proportion within region

0.90 0.900002 0.900065

0.95 0.950002 0.949944

0.99 0.990002 0.989812

0.999 0.999003 0.998907



Sampling from the estimator of the 2D Cross density

- 10000 data points



10 dimensional mixture conditional sampling

- 2-line 10 dimensional cross: 
- Line 1: (0, …, 0) -> (1, …, 1)
- Line 2: (1, 0, 1, 0, ... , 0) -> (0, 1, 0, 1, …, 1)











Results

- 256 cores, 480GB memory (16 c4.4xlarge workers)
- 70/30 split between training data and hold-out data 
- For 2 dimensions,   n = 62,500,000,000 
- For 10 dimensions, n = 12,500,000,000 



Scalability

- We have linear scaling with doubling of worker cores
- Again, 70/30 split between training data and hold-out data 
- For 2 dimensions,   n = 6,250,000,000 
- For 10 dimensions, n = 1,250,000,000 



Breakdown of 1TB timings



How do we do it?



Construction of an estimate

- Stage 1: Obtain Box hull that contains all the datapoints dimension-wise: 
○ [[min {xi,k}i=1,...,n, max{xi,k}i=1,...,n]: k=1,...,d}], a pure map-reduce step

- Stage 2: Leaf Address/Label: Map each data point to its binary leaf address
○ This is the (precision-loss-able) data compression stage: finestResDepth and maxLeafCount

- Stage 3: Merging to finest histogram considerable due to driver RAM budget
○ This is specified by countLimit, giving the maximum number of datapoints in any leaf of the 

coarsest histogram tree to be further coarsened in driver to find the optimal MDE histogram
- Stage 4: Search for MDE on a Markov chain’s path of coarsening histograms

○ Using collator regular pavings that are broadcasted over workers for distributed validation
○ Universal Performance guarantees are given by the SEB-PQ-Markov chain and the 

Vapnik-Chervonenkis dimension of the Yatracos Class of Scheffe sets of the sparse tree 
histogram along the coarsening path of the chain.































Pros

- Constructed specifically for the distributed setting in mind
- Works for any continuous probability distribution (f in L)
- Works for any number of dimensions
- Very nice regression tools once you have constructed an estimate



Cons

- Hard to generate a density estimate (f_n of f), many parameters for the user 
to tune

- The construction can be seen as a four-stage process which makes the 
window for errors large

Some ideas to further improve performance in computational efficiency
- 70% in garbage collection of JVM process
- Modified algorithmic improvements



Thanks for your attention!


