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Abstract� The sampling distribution of a collection of DNA sequences is studied un�

der a model where recombination can occur in the ancestry of the sequences� The

in	nitely�many�sites model of mutation is assumed where mutation is supposed to al�

ways segregate a new mutant site� Ancestral inference procedures are discussed for 


estimating recombination and mutation rates� estimating the times to the most recent

common ancestors along the sequences� estimating ages of mutations� and estimating

the number of recombination events in the ancestry of the sample� Inferences are made

conditional on the con	guration of the pattern of mutations at sites in observed sample

sequences� A computational algorithm based on Markov Chain Monte�Carlo is devel�

oped� implemented� and illustrated with examples for these inference procedures� This

algorithm is very computationally intensive�
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Introduction�

If a sample of genes is taken from a population in a model where the in	nitely�

many�alleles model is assumed then the sampling distribution for a con	guration of alle�

les is the well known Ewens� sampling formula derived in Ewens 
������ The in	nitely�

many�sites model is a re	nement of the in	nitely�many�alleles model where the base

structure of the genes is known� If distinct sequences are labelled as di�erent alleles

then the allele con	guration is distributed as Ewens� distribution� In both these models

mutation is assumed to produce a new allele type� equivalent to segregating a new site

at the 	ner level� The distribution of the number of segregating sites was found by Wat�

terson 
������ but an explicit form for the complete sampling distribution of sequences

is unknown� Studying the sampling distribution of sequences in this model is equivalent

to studying distributions on genealogical trees that can be deduced from the mutation

con	guration at bases 
Ethier et al� ����� Gri�ths ����� Gri�ths et al� ����a�� These

trees are derived from a condensation of the coalescent tree with mutations� have ver�

tices as mutations and are without a time scale� It is possible to 	nd a recursion for the

sampling distribution in terms of a distribution on trees� Gri�ths et al� 
����b� exploit

this recursion by 	nding a representation for the likelihood of a sample of sequences

which then allows a Markov Chain Monte�Carlo simulation method to be applied to

estimate the likelihood� The technique also generates likelihood curves for the scaled

mutation rate �� allowing maximum likelihood estimation of it from observed data� It

is also possible to compute related ancestral distributions using a simulation technique�

One of great interest is the distribution of the time to the most recent common an�

cestor of the sequences� conditional on the data� It is easy enough to compute the

unconditional time to the most recent common ancestor distribution� but conditioning

on the observed data makes it a much harder problem� Another model of sequences

with a 	nite number of bases where back mutation is possible is studied in Gri�ths et

al� 
����a� and a similar Markov Chain Monte Carlo method implemented to 	nd the

likelihood of samples� Although this model seems more realistic� the in	nitely�many�

sites model is really better in that it uses the natural ancestral tree structure in a very

e�cient way� Variable population size models are studied in Gri�ths et al� 
����c��
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In this paper a model where recombination can occur within sequences is stud�

ied� a recursion for the sampling distribution of sequences found� and a Markov Chain

Monte�Carlo scheme developed and implemented to obtain the likelihood of a sample

of sequences� Joint maximum likelihood estimates of the mutation and recombination

rates can then be found from a likelihood surface� We stress that this uses the maximal

information in the sample� rather than using summary statistics such as the number of

segregating sites� Related ancestral distributions� conditional on the observed data� can

also be found numerically by using this scheme� Of interest are methods to compute

the time to the most recent common ancestor at points on the sequence� and estimate

the recombination events occurring to the sample�s ancestors�

It is possible to understand the computer program interface and output without

fully understanding the theory and algorithm for 	nding likelihoods� so we hope that

readers concerned about the complexity of the theory will skip to details of the program�

and the example output�

A gene is represented as a continuous length of DNA� denoted by the unit interval

��� ��� We wish to model the evolution of a population of such genes� The model used

here is a neutral one in which recombination and mutation events occur� The population

is assumed to be evolving through discrete generations in a Wright�Fisher�like manner�

each generation being of constant size �N � The model is a haploid one� but a diploid

model in a random mating population essentially behaves like this haploid model�

If there is no recombination in such a model then the ancestry of a sample of genes

can be described by the coalescent process in Kingman 
������ This traces the ancestral

tree or genealogy of the sample back through time� When there is recombination the

analogue of the coalescent process is an ancestral recombination graph� described in

Gri�ths et al� 
������ The ancestry is no longer a tree� When recombination events

occur to an individual which is an ancestor of the sample� the genealogy bifurcates 
ie�

the individual has two ancestors�� Thus a graph is obtained rather than a tree�

Speci	cally� in our model genes choose their parents from the previous generation

according to the following scheme


With probability � � r a single parent is selected uniformly at random from the

previous generation�
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With probability r a recombination event occurs and so two parents are chosen

uniformly at random�

Each gene in the next generation chooses one or two parents in this manner 
in�

dependently of all other choices�� The collection of these �N o�spring genes forms the

next generation�

If recombination occurs a position for its location� Z� is chosen 
independently from

the location of other such events� according to a given distribution� and the o�spring

gene is formed from the lengths ��� Z� and �Z� �� from the 	rst and second parents

respectively� Both of the parents are regarded as ancestors of the o�spring and therefore

of any individual in a 
forward� line of descent of the o�spring� Here Z is taken to have a

continuous distribution on ��� ��� where breaks are possible at any point in ��� ��� We may

choose to use a Uniform distribution� to model a situation in which the recombination

rate is constant along the gene� or use other distributions if we wish to model varying

recombination rates� hotspots� or other features�

As is usual� time is measured in units of �N generations and we let N ��� The

recombination rate per gene per generation r is scaled in the normal way by holding

� � �Nr 	xed�

O�spring are also subject to mutation events at rate u per gene per generation�

which is similarly scaled by setting � � �Nu� The in	nitely many sites model of

mutation is assumed� so that mutation never occurs at the same site twice�

We assume the population is stationary and draw a random sample from it at the

present time� An observed sample of sequences is distinguished by its segregating sites�

where there are two types of bases� together with the identity of the genes carrying each

of the two types at such sites� Thus� assuming that the wild site types 
ie� the type of

the most recent common ancestors 
MRCAs� of the bases� are known� each gene in a

sample can be described by positions of mutant types within the scale ��� ��� and thus

the sample is described by a collection of such positions� This continuous model has

been studied in Hudson 
������ 
������ and Kaplan et al� 
������ Gri�ths et al� 
������

Figure � illustrates a recombination graph for a sample of n genes� Dots on the

edges indicate mutations occurring to ancestors and such points are labelled with the

location of the mutation� Looking back in time� coalescences occur when two edges join
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to a vertex� and recombinations occur when one edge joins to two� Positions Z�� Z�� � � �

where breaks occur are labelled on the graph 
as a�b� c and d��

Let f�
t�� t � �� �
�� � ng denote the number of ancestors of a sample of n

back in time� This is a birth and death process with respective rates �k � k��� and

�k � k
k � ����� Because of the quadratic death rate compared to the linear birth

rate� with probability � there is a MRCA in the graph� It is implicit that the process is

de	ned backward in time to negative in	nity�

Mutations occur according to a Poisson process along the edges of the graph at

rate ���� and are chosen at random uniformly within the sequence� Whether a mutation

appears in a sample sequence depends on whether the point it falls on is ancestral to

the sequence� Not all genes in previous generations carry DNA which is ancestral to

the sample� It is clear that genes not in the recombination graph will carry no ancestral

DNA� However it is also true that� even for genes in the ancestral graph� only part

of their DNA may be ancestral� Whenever we observe a recombination event in the

ancestral graph the o�spring gene consists of a subset from the DNA each of its two

parents� Thus if a mutation carried by the parent is not within the chosen subset it will

not be passed on�

Figure ��

Each point x � ��� �� has a coalescent tree T 
x� associated with its ancestry� This

tree traces the ancestry of the sample at that particular point� These trees are imbedded

in the recombination graph� To obtain T 
x� trace from the bottom of the graph upward

toward the MRCA in the graph� If there is a recombination vertex with label z� take

the left path if x � z� or right path if x 	 z� The MRCA in T 
x� may occur in the

graph before the grand MRCA� Figure � shows an example of T 
x� when x 	 b and

x 
 c� d�

Figure ��

Since recombination events do not a�ect the ancestry of a tree T 
x� the marginal

distribution of the tree is the same as if it were from a single coalescent process� It follows

that the time to the most recent common ancestor 
TMRCA� in T 
x� is marginally
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distributed as the time to absorption in a death process with rates f�k� k � �g starting

at n� the sample size� It also follows that the expected number of segregating sites in

the sequences is �
Pn��

j�� 
��j�� which is independent of the recombination rate 
Hudson

������

An urn scheme for simulating samples is described in Gri�ths et al� 
������ which

is adapted from a two�locus method of Ethier et al� 
������ This scheme simulates the

order of coalescent� recombination� and mutation events back in time as an imbedded

chain� then develops the sample forward as a second step starting from the MRCA�

Consider n ancestor genes of d distinct types of a sample in the recombination

graph at a 	xed time back� Material ancestral to the sample on these genes is a collection

of intervals Ai � fAi��� � �� �� � � �g� i � �� � � � � d� Mutations in sample genes included

in the ancestral material are denoted by Mi � fMi��� � �� �� � � �g� i � �� � � � � d� That

is� Mi� is the collection of mutation points in the ancestral material Ai� on ancestor

gene i� Multiplicities of genes are denoted by n� The ancestor state is then described

by

A � fAig�M � fMig�n � fnig�

�
A
t��M
t��n
t�� t � �

�
is a Markov process looking back in time� with entries in A
��

being complete sequences f��� ��g� M describing the current mutation points and n
��

multiplicities of the sequences�

Items � to � in the next proposition detail how transitions are made in the process�

according to whether there is a coalescence� mutation or recombination event immedi�

ately back in the recombination graph�

As an example consider a sample of four sequences shown on the left in Figure ��

which was generated from the recombination graph in Figure �� with a � ���� b � ����

c � ���� d � ���� and has mutations at positions at ���� ���� ���� Five ancestors of this

sample taken at a cross section of the graph just below the mutation at ��� are also

shown on the right of Figure �� The ancestral fragments of the sequences are� from the

top of the diagram� 
��������� empty sequence� 
��������� 
��������� 
��������� Mutations

are only carried by the �rd and �th ancestor sequences�

Figure ��
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Let Ij
x� equal � if there is a mutation at position x � ��� �� for sampled gene j�

and equal � otherwise� If there is no recombination a necessary and su�cient condition

that a collection of points represents a sample of sequences with mutations is that in no

two locations x� y � ��� �� do there exist three genes j� k� l such that


Ij
x� � �� Ij
y� � ��
Ik
x� � �� Ik
y� � ��
Il
x� � �� Il
y� � ��

The example above violates the condition at the points ���� ���� and one deduces that

there must have been a recombination event between ��� and ��� in the sample�s ancestry�

When recombination is present it is theoretically possible to have any pattern of

mutations�

If it is not known which types are wild at segregating sites� then if there is no

recombination and we observe s segregating sites there are s � � rooted genealogical

trees corresponding to the unique unrooted tree constructed from the data� depending

on where the root actually is in the tree� Changing the root from one position to another

toggles which bases are wild and mutant between the two potential root positions� This

concept is discussed in Gri�ths et al� 
����a�� If recombination in the model is possible

anywhere along the sequences� then theoretically any of the �s possibilities for wild

types at segregating sites are possible� instead of s � � with no recombination� though

some of the con	gurations may have a relatively small probability�

Sampling distribution of sequences�

In Gri�ths et al� 
����b�����a� a recursion for the probability of a genealogical

tree is derived by considering the next event back in time in the coalescent tree�

The next proposition gives a recursion for the sampling distribution of sequences

when recombination is possible by considering the next event back in time in the recom�

bination graph� which could be coalescence� recombination or mutation� It is necessary

to consider a state space which includes subsets of sequence material because recombi�

nation ancestors of a gene only contain part of the gene�s material�

Let 
A�M�n� be a collection of fragments of sequences with distinct mutations

x�� � � � � xm inM and distinct end�points of intervals a�� � � � � ar inA� This will represent a

con	guration of material ancestral to the sample taken at a cross�section of the ancestral
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recombination graph� Let Q
A�M�n� be the joint density of observing these mutations

and end points for a 	xed known fragment con	guration A� taken from a stationary

population� Although Q
A�M�n� will represent an ancestral con	guration� it is de	ned

just in terms of given fragments� taken from a stationary population� and not relative

to an initial sample�

Proposition�


n
n � �� � a� � b��Q
A�M�n�

�n
X
�


ni � ��Q
A�M�ni�

� �n
X
�


nk � �� �ik � �jk�Q
A�M�nkij �

� �
X
�


nk � ��Q
A�Mi
mi���n
k
i �

�
�

n� �

X
�

Z

ni � ��
nj � ��Q
Aij

k 
x��M
ij

k 
x��nijk 
x��dx


��

The Kronecker delta is denoted by �jk � � if j � k or �jk � � if j �� k� Subscripts

on n denote a decrease in the respective co�ordinates� while superscripts denote an

increase� For example nkij � n � ei � ej � ek� where ej � 
�jk�� the jth unit vector�

a �
Pd

i�� nijAij� the total fragment lengths� and b �
Pd

i�� ni

�
maxfx�x � Aig �

minfy� y � Aig
�
� the total amount of material where a recombination event a�ects the

ancestry of the fragments in 
A�n��

An explanation of the notation in 
��� and a description of the summation regions

and the immediate event back in time to the ancestors of the fragments from which the

terms arise follows�

�� Coalescence of two genes of identical type� The summation is over fj�nj 	 �g�

�� Coalescence of two di�erent genes� This can only occur if points ancestral in both

sequences either both contain a mutation point� or neither does� That is for genes

i� j and all �� 


fx� �x� �Mi�� x� � Ai�

�
Aj�g � fx� �x� �Mj� � x� � Ai�

�
Aj�g�
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After coalescence the kth gene is formed by taking Ak � Ai

S
Aj � and similarly

for the mutation points� Notation for A� M is abused in that a new type may be

created� in which case take nk � � before creation of the type� It is possible that

i or j is equal to k� Summation is over all appropriate unordered pairs 
i� j��

�� Mutation in a fragment� Summation is over all singleton mutations 
which could

have been produced by the immediate event back in time�� In the notation


A�Mi
mi���nki � the ith gene has a mutant point mi� � Mi� removed and then

becomes of type k� Take nk � � if k is a new type� Type i must be a singleton

type� and so is removed from the ancestor list�

�� Recombination to gene k at position x between the minimum and maximum

ancestral points in Ak producing recombination ancestors i and j� ni and nj

implicitly depend on x� The immediate ancestral con	guration is denoted by

Q
Aij

k 
x��M
ij

k 
x��nijk 
x��� If x occurs where there is no ancestral material� be�

tween Ak� and Ak��� then genes i� j are such that Ai � fAk��
 � �g� Aj �

fAk��
 	 �g� and similarly for Mi� Mj � The types i� j may already exist in the

ancestors� If x occurs where there is ancestral material� in Ak�� then this set is

split at the point x� Because of the assumption of a continuous distribution of re�

combination in this case genes i� j are unique in the ancestors� thus ni � �� nj � ��

Boundary conditions in 
�� are that Q
A��M��n�� � � for con	gurations


A��M��n�� where all fragments in A� are disjoint and have multiplicity ��
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Proof�

Consider 
�� written in the form

Q
A�M�n�

�

n � a�� � 
n� b��


n
n� �� � n� � n��
Q
A�M�n�

�
n
n� ��


n
n� �� � n� � n��

X
�


ni � ��

n� �
Q
A�M�ni�

�
�n
n� ��


n
n� �� � n� � n��

X
�


nk � �� �ik � �jk�

n� �
Q
A�M�nkij � 
��

�
n�


n
n� �� � n� � n��

X
�


nk � ��

n
Q
A�Mi
mi���n

k
i �

�
n�


n
n� �� � n� � n��

X
�

Z

ni � ��
nj � ��

n
n � ��
Q
Aij

k 
x��M
ij

k 
x��nijk 
x��dx

The previous event back in time in the ancestry of the fragments was coalescence�

mutation or recombination at rates of �
�
n
n � ��� �

�
n�� �

�
n�� Argue then that condi�

tional on these events a con	gurationA�M�n occurs depending on the various ancestor

con	gurations and which genes coalesce� mutate or recombine� Although the notation

is awkward� the terms on the right hand side of 
�� simply represent the probability

of the con	gurations which lead to the con	guration Q
A�M�n� one step back in the

recombination graph�

The 	rst right hand side term represents the case when a mutation or recombina�

tion event does not a�ect the con	guration� Note that the coalescent pair in the �rd

term is unordered� explaining the factor of �� while the recombinant pair of genes in the

�th term is ordered 
by convention in this model��

The argument above relies implicitly on stationarity and the consistency of sub�

graphs in the recombination graph� That is� the distribution of a subgraph of n� an�

cestors taken from a cross�section of the recombination graph is again distributed as a

recombination graph of n� individuals�

Notice that the total amount of fragment material in the con	gurations on the

right hand side of 
�� is always less than or equal to the amount of material� a� in
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A�M�n� on the left hand side of 
��� Equation 
�� is analogous to equations found

by other authors for 	nite�locus models� for example in a two�locus model equation in

with the in	nitely�many�alleles model� Golding 
������ Ethier et al� 
������

If there is no recombination in the model� then taking 
�� with � � � and a � n

gives a recursion for the likelihood in the in	nitely many sites model� This is similar

to a recursion in Gri�ths et al� 
����a�� where there is also a discussion about the

combinatorial arrangement of sites and what e�ect the ordering has on the likelihood�

Mutation positions have a uniform distribution on ��� �� when � � ��

Computing the likelihood of a sample�

Q
A�M�n� can be computed by a method of Gri�ths et al� 
����a b�� where it

is represented as the expected value of a functional on a Markov chain which moves

backward in time to where the MRCA of each point on the sample sequences has been

determined� Q
A�M�n� is then estimated by taking the average functional value over

repeated simulations of the process� A sketch of the representation follows�

Consider a Markov chain which has state space f
A�M�n�g� Transitions in the

Markov chain are made to states indicated in the right hand side of equation 
��� Denote

S � n
X
�


ni � �� � �n
X
�


nk � �� �ik � �jk� � �
X
�


nk � �� �
�c


n� ��
�

where c �
Pd

i��

�
maxfx�x � Aig �minfy� y � Aig

�
�

In this constructed Markov chain transitions are made from 
A�M�n� to 



A�M�ni� with probability n
ni � ���S�


A�M�nkij � with probability �n
nk � �� �ik � �jk��S� 
��


A�Mi
mi���nki � with probability �
nk � ���S�


Aij

k 
x��M
ij

k 
x��nijk 
x�� with probability �c�
�

n � ��S

�
�

where in the last type of transition x is chosen uniformly within
Sd

i��

�
minfx�x �

Aig�maxfy� y � Aig
�
� without regard to multiplicity of the sequences� Denote X �


A�M�n�� Y the state the chain moves to� and f
x� y� � S�
n
n � �� � a� � b��� for

��



transitions not of the last type� f
x� y� � 
ni � ��
nj � ��S�
n
n � �� � a� � b��� for

transitions which are of the last type�

The process is absorbing at states where there 	rst is a MRCA at all positions

on the sample chromosomes� For such a con	guration 
A��M��n��� Q
A��M��n�� �

�� This process is not a genuine genealogical one� though it does however follow up

along a recombination graph� with quadratic rates of coalescence compared to a much

smaller rate of recombination� The reason for choosing the last transition probability

and f combination is for computational e�ciency� Before each transition a program

implementation must compute transition probabilities for all possible changes of state�

If the last transition did follow the pattern of the others then it would be necessary

to search for types in the sample which are possibly the same type as recombinant

ancestors of the gene which is constructed by recombination� This would have to be

done for every position on each gene� The scheme in 
�� is much easier to implement�

Suppose that X
k� is the state of the chain at steps k � �� � � � � � � where � is the

absorption time� Then 
as in Gri�ths et al� ���� a�b� it is possible to express

Q
A�M�n� � E
����Y

�

f
X
k��X
k � ���
�
� 
��

Q
A�M�n� can be estimated by repeatedly simulating the process and averaging the

functional
�Q���

� f
X
k��X
k � ���
�
over replicates�

Actually a more detailed argument is required to show that 
�� is a valid represen�

tation� Let Qr
A�M�n� be de	ned similarly to Q
A�M�n� but with the restriction that

the number of recombination events a�ecting the sample�s ancestry before the MRCAs

of the sample sequences be at most r� Qr
A�M�n� satis	es a similar equation to 
���

with Q replaced by Qr except for the last right hand side term where the replacement

is Qr�� if r � �� or zero if r � �� This modi	ed version of 
�� is a true recursive set

of equations on a degree de	ned by r � n � s� where s is the number of segregating

sites� Q�
A�M�n� is zero if A does not contain complete sequences lengths ��� �� or M

is inconsistent with there being no recombination� The recursion is terminated when

��



r � � at singleton sequences A where Q�
A�M� f�g� � � if A � f��� ��g� or zero other�

wise� Let R be the number of transitions of the last type in 
��� before absorption� A

modi	ed version of 
�� derived from the recursion for Qr is

Qr
A�M�n� � E
�
IfR � rg

���Y
�

f
X
k��X
k � ���
�
� 
��

where If�g is the indicator function� Let r �� in 
��� Using the monotone convergence

theorem on both sides shows that 
�� is true� It is not easy to argue that a solution

to 
�� is unique directly� but the modi	ed version of 
�� with Qr does have a unique

solution� so 
�� is a valid representation obtained through this route�

If interest is centered on estimating �� � from 
��� then an entire likelihood surface

can be generated by simulating a process with parameters ��� ��� then expressing

Q����	
A�M�n� � E������	

����Y
�

f
X
k��X
k � ��� ��� ��� �� ��
�
� 
��

where

f
X�Y � ��� ��� �� �� � f���
X�Y �
pX�Y 
�� ��

pX�Y 
��� ���

�
S
��� ����
X�Y �

n
n� �� � a� � b�
�


��

fpX�Y 
�� ��g are transition probabilities� and �
X�Y � takes values ���� for mutation

transitions� ���� for recombination transitions and is unity otherwise� S
��� ��� is the

variable S in 
�� with parameters explicit� An entire likelihood surface for �� � is returned

for each simulation run of the process� which is generated with parameters ��� ��� This

technique is standard in Markov Chain Monte�Carlo methods� In practice the algorithm

will be most accurate in the neighbourhood of the generating parameters�

The algorithm for computing the likelihood can also be enhanced to compute the

distribution of quantities of interest� conditional on the sample con�guration� such as

the number of recombination events in the ancestry of a sample� and the MRCA times

along the sequences 
TMRCAs��

��



Recombination events in the ancestry of a sample�

Let R denote the distribution of the number of recombination events in material

ancestral to the sample� before the last MRCA along the sequences� Gri�ths et al�


����� study aspects of the distribution�

A particular result is that E
R� � � � ��

The emphasis here is on computing the distribution of R� conditional on the ob�

served sample con	guration�

Let 
F�� R��� � � � � 
Fk� Rk� denote realizations of
�Q���

� f
X
k��X
k����� R
�
over

k simulation runs� then an empirical distribution for R is

P 
R � j j Sample con	guration� �

P
f	
R��j���	�kg

F	Pk

	�� F	
� j � �� �� � � � 
��

There is a distinction between recombination events which fall in ancestral material� and

those which do not� but which do in�uence ancestry of a sample� Both distributions

can be estimated as in 
���

At a more detailed level the distribution of the number of recombination events in

di�erent regions� conditional on the observed data can be studied in a similar way�

Times to MRCAs along the sequence�

Information about times at which a particular event occurs in the ancestry of a

sample such as the time to the last MRCA can be found by considering times between

events in the recombination graph� The time between transitions from 
A�M�n� to

a con	guration on the right hand side of 
�� is an exponentially distributed random

variable with rate �
�

n
n����a��b��� A single run estimate of the time to a particular

event is the sum of exponential random variables with the above rates along the path

to the event in a realization of the Markov chain with transitions probabilities given in


���

There are a 	nite number of di�erent MRCAs of a sample of sequences at positions

along the sequence� Let fW 
x�� � � x � �g be the MRCA times along the sequence�

A method for computing an empirical 	nite�dimensional distribution of W ��
W 
x��� � � � �W 
xm�

�
for x�� � � � � xm � ��� ��� conditional on the observed sample con	g�

uration is the following�

��



In each Markov chain simulation with functional F � simulate times between events

in the Markov process corresponding to the observed imbedded chain with � replicates

and suppose that the � MRCA times observed on the ith simulation are wij � j �

�� � � � � �� The empirical 
discrete� distribution of w given the sample con	guration is

found from the k� simulation replicates� This empirical distribution takes values wij �

with probability �


Fi�

Pk

� F	� i � �� � � � � �� j � �� � � � � k corresponding to k Markov

chain simulations with � time replicates� The step of replicating Markov times for the

imbedded chain is to improve accuracy in the estimated distribution�

An easier variation is to calculate the mean and variance functions fE
W 
x��� � �

x � �g and fvar
W 
x��� � � x � �g� conditional on the data by calculating exactly

the expected times and variances in the Markov process corresponding to each of the k

simulation runs of the Markov chain� A weighted average is then taken� with respect to

the functional values Fj � j � �� � � � � k�

The mean ages of mutations in the sample� conditional on the data are also com�

puted in a similar way�

Implementation of the likelihood algorithm�

The algorithm described above has been implemented as a discrete approximation

by taking a large number L of base positions� An in	nitely�many�sites model for the

mutation process is assumed� thus if there are s segregating sites in the sequences then

there are s mutations in material ancestral to the sequences� Recombination is taken to

occur in the L�� positions between the L bases� As an approximation to the continuous

model recombination is only allowed to occur at most once in any position along the

ancestor lines� This can be relaxed to allow multiple recombination at positions as an

option�

The state space of the analogue of the process de	ned by 
�� is 
B�n�� where B

is a d	 L matrix representing d sequence types� with multiplicities n� A row of B has

the form

� � � � � � 
 � 
 
 � � � � 
 
 � �

where � denotes the MRCA base type of a site� � a mutant type since the MRCA� and


 an undetermined type�

Possible transitions are related to 


��



Coalescence between like types in row i� where ni � ni � ��

Coalescence between types in rows i and j where no two entries in any column �

satisfy bi	 � ��bj	 � � or bi	 � ��bj	 � �� coalescing to a sequence b� such that

b�	 �

�
� if bi	 � � or bj	 � ��
� if bi	 � � or bj	 � ��

Mutation� where a singleton � in a column of B where the multiplicity of the row

is �� is removed� and

Recombination� where a sequence is split into two randomly in one of the L � �

positions with entries to the left of the split replaced by 
 in one parent gene� and

similarly for the right in the other�

The transitions described above are analogous to those in 
�� and have similar

probabilities� taking into account that mutations and recombinations are not allowed

to occur at the same site twice� It is possible that the process is absorbed into a state

before the common ancestor� where every available site has encountered a recombination

event� but coalescence is not possible� This is however very unlikely for large L�

The process is absorbed when the MRCAs of all the L sites have been hit�

As an illustration suppose � � ���� � � ��� are mutation and recombination rates

for complete sequences� and the state is

� 
 � � 
 � � � � � �
� 
 � 
 
 
 � � � � �
� 
 � � 
 � � 
 � � �

�

Numbers before the colon denote multiplicities� 
 � ��� � � ��� � � �� and � � ��

represent blocks of non�segregating sites containing entries �� and � � ��� � � � are

blocks of non�ancestral material with entries 
� n � � with a total base length L � ����

Possible transitions and rates corresponding to 
�� before scaling are 


coalescence for a pair 
���� ���

coalescence for a pair 
���� ���

mutation at site � ���

recombination in sequence � ���

recombination in sequence � ���

��



recombination in sequence � ����

The rate of coalescence for 
���� is n
n�� �� � �� The pair 
���� has a coalescence

rate of �n
n� � �� �� � �� since the coalescent product is the 	rst sequence type� The

last sequence cannot coalesce with the 	rst or second because of the respective patterns

at the 	rst and last segregating sites� The number of positions between sites in which

recombination a�ects the ancestry is ��
��� � for sequences ��� and ��
��� � for

sequence �� a total of c � ���� a � � 	 number of sites not 
� weighted by multiplicity

� ��� 	 �� � ���� and b � � 	 number of positions for recombination� weighted by

multiplicity � ��� 	 ��� � ������ The sum of the rates is S � ����� If X denotes the

con	guration above� and Y the state moved to� then f
X�Y � � ������ for all transitions

apart from recombination to the 	rst sequence between segregating sites � and �� when

f is multiplied by �� since then the right recombinant sequence is the same as sequence

��

Program details�

Major options available in the program are shown below�

usage 
 recom mutation�	le theta rho runs seed �options�

Options

�q distribution of recombination events� given data �out	le�

�p estimate recombination hits at each site� given data �out	le�

�t estimate time to mrca at each site� given data �out	le�

�c distribution of time to last mrca� given data �out	le�

�w estimate time to mutations at sites� given data �out	le�

�f likelihood surface �theta� theta� points rho� rho� points out	le�

�m allow multiple recombination between sites

�b �recombination bound for events to mrcas of sample�

�r �input 	le of non�homogeneous recombination relative rates�

The examples below show output from the program and discuss some of the op�

tions� A variation to the model allowed in the program with switch �m is to allow

multiple recombination between sites� This is possible because the implementation is

��



a discrete approximation� Variable recombination rates are allowed along the sequence

with switch �r� A bound on the number of recombination events which a�ect the an�

cestry can be set� If the bound is r recombination events� then the program computes

Qr
A�M�n�� the joint likelihood of the sample con	guration and the event that R � r

occurs� The interpretation of other estimates is then conditional on R � r� The recom�

bination rate � can be set to zero� in which case the model is the in	nitely�many�sites

model with no recombination� Likelihood computations in this model can be done with

a program ptreesim� theory and examples are in Gri�ths et al� 
����b�� Output will

di�er slightly because of the 
long� 	nite locus approximation in recom� and there will

be a combinatorial factor di�erence�

There is a large amount of variation in replicates of an evolutionary process with

recombination� so the characteristics of the distributions need to be taken as exploratory�

rather than as very precise estimates� As well as evolutionary variance the estimated

likelihood produced by recom is a simulation estimate based on independent runs of

the Markov chain described earlier� Estimates will be normally distributed� by standard

theory� and have a standard deviation proportional to the inverse square root of the

number of runs� Simulation variances are output by the program� The theoretical

variance of the functional
Q���

� f
X
k��X
k � ��� for a single realization can be large

because many of the paths that the Markov process can visit can have a high probability

but return a functional value of e�ectively zero� There is a system switch in recom

to abort these paths early� and take the functional as zero for e�ciency� We however

don�t wish to �force� the process along particular paths� or abandon independent runs� as

desirable estimation properties would be lost� TMRCA estimates and other quantities

which depend on ratios of means will also be normally distributed� A large number

of runs are required to achieve accuracy for the TMRCA estimates� and a substantial

computer is needed for speed�

In applying the program to real data there is also a question of how close nature

and the basic assumptions of the model really are� and how robust the model is� These

are not easy questions to address and we do not try to do so here�

The user interface to the program is quite straightforward� but 
as usual� the

output should be interpreted carefully� Gnuplot commands are written to 	les to allow

graphical output� such as a curve of the TMRCAs along the sequences�

��



Internally sequences are represented as bit arrays to minimize memory usage�

The program is available in portable C source code on request from the �st author�

A program which simulates samples of sequences under the continuous recombination

model is also available� This does not need to use a discrete locus approximation� The

algorithm used for recom and the implementation is much more complex than the

sample simulation program which is relatively easy to code�

The following three examples illustrate some aspects of ancestral inference that

can be made from samples of sequences when recombination may have occurred in the

samples ancestry� These inferences include estimating TMRCAs along the sequences�

estimating the number of recombination events in ancestral material and maximum

likelihood estimation of �� �� recom is used as a computational tool� Emphasis is on

making inferences conditional on the data observed�

Example ��

In the sample of sequences shown in Figure �� a simple moment estimate of � based

on � segregating sites in a sample of � is �� � ��
� � �
�
� �

�
� � �����

Characteristics of ancestral distributions� conditional on the data were found by

running recom for ������� replicates for each value of �� with a discrete approximation

of ��� loci�

Estimates of the mean and standard deviation of the number of recombination

events� conditional on the observed data� for � � ����� and illustrative values of � are

shown in Table �� The mean is monotonic increasing with �� with a standard deviation

that is not extremely large� Recall that there must be at least one recombination event

in this data set�

Table ��

The expected number of recombination events� and the average number per inter�

val length� occurring in the regions between mutations are shown in Table ��

The average number of recombination events per length is higher in the 
��������

interval� since there must have been recombination there� � � ��� is a very large rate�

and it is possible that the algorithm is performing poorly there�

��



Estimates of the ages of the mutations� with standard deviations are shown in

Table ��

Table ��

Table ��

A graph of the expected TMRCAs along the sequence 
scaled to length �����

conditional on the data� with � � ����� � � ��� is shown in Figure �� The expected

coalescent time to the TMRCA if there was no recombination� and the data is ignored

is ����

Figure ��

The graph in Figure � shows the characteristics of a higher TMRCA around the

mutations at ���� ���� ���� and a higher TMRCA in the interval 
�������� where recombi�

nation must occur� The times at mutations are not as large as the pointwise prediction

������ Even though ������� runs were used to obtain the graph� there is still some sim�

ulation variance about a true curve� The TMRCA range in Figure � is 
����������� The

small variation along the sequences is di�cult to estimate accurately� Another TMRCA

graph was generated by recom with �� million runs and is also shown in Figure �� The

curve is much smoother than the curve with ������� runs� Mutations at ���� ��� produce

the shape of the curve� The peak in the 	rst curve at ��� is missing� but the �nd curve

more accurately re�ects the fact that there are two sequences with mutations at ���� ���

and only one at ���� hence the mutation at ��� will have occurred more recently� A long

period random number generator ran� from Press et� al� 
����� was used in recom�

It is possible to explicitly calculate the expected TMRCA at a single point� con�

ditional on observing a mutation at that point� This is not the same as conditional on

the whole data set� but it is of interest� Let Tn� � � � � T� be the times while n� � � � � � an�

cestors of a fragment of length �x of n sequences� These are distributed as exponential

random variables with rates �n� � � � � ��� Recombination does not have an e�ect in the

computation because for small �x the probability of both recombination and mutation

in an interval is o
�x��� 
A quantity is o
z� as z � � if o
z��z converges�� Let ��x

��



denote the number of mutations in the interval of width �x� As �x� �� conditional on

there being at least one mutation in the interval there can only be one in the sense that

lim�x�� P 
��x 	 � j ��x � �� � �� Then

E
TMRCA at x j mutation at x�

� lim
�x��

E
�Pn

j�� Tj j ��x � �
�

P 
��x � ��

� lim
�x��

EE
�Pn

j�� TjI
�
��x � �

	
j Tn� � � � � T�

�
P 
��x � ��

� lim
�x��

E
�Pn

j�� Tj

��x
�

Pn

j�� jTj� exp
�
��x
�

Pn

j�� jTj�
�

E
 ��x�
Pn

j�� jTj� exp
�
��x
�

Pn

j�� jTj�
�

� E
� nX
j��

Tj

�
�

cov
�Pn

j�� Tj �
Pn

j�� jTj

�

E
�Pn

j�� jTj

�

� �
�
��

�

n

�
�

�
�
�
n
�
Pn��

j��
�
j�

�
Pn��

j��
�
j

�


���

The same formula 
��� holds for the expected TMRCA� given a recombination event at

that point� but recombination events at points are not visible in the sample sequences�

If n � � then 
��� evaluates to ������ This is larger than the unconditional expected

time of ����

The expected TMRCA in an interval of width �x� conditional on no mutation is

�
�
��

�

n

�
� ��

� �
n
�

n��X
j��

�

j�

�
�x � o
�x�� as �x� �� 
���

but this is not such an appropriate quantity to work with because of linkage�

Arguing in a similar asymptotic way as in 
��� the expected age of a mutation�

given that one has occurred at a point on the sequences is

��



E
Age of a mutation� �
E
�Pn

j�� jTj
�Pn

k�j�� Tk �
�
�Tj
��

E
�Pn

j�� jTj
�

�
�
�
�� �

n

Pn��
j��

�
j
�
Pn��

j��
�
j�

�
Pn��

j��
�
j

�


���

The ratio on the left hand side of 
��� is obtained by noting that the rate of

mutation while there are j ancestors is ��x
�
jTj� then if a mutation occurs the expected

age of it is
Pn

k�j�� Tk�
�
�
Tj � If n � � then 
��� evaluates to ������� This is comparable

to the ages shown in Table �� The age ranking of the mutation sites� oldest to youngest�

conditional on the data is ���� ���� ����

Let N
x�� x � ��� �� denote the number of sequences containing a mutant type at

position x� As a variation on the formulae 
���� 
����

E
TMRCA j N
x� �m� � �
�
��

�

n

�
� �



n� �

m

��� nX
j��



n� j

m� �

�
�

j
j � ��
� 
���

and

E
Age of a mutation j N
x� � m� � �



n� �

m

��� nX
j��



n� j

m� �

�
n� j � �

n
j � ��
� 
���

for m � �� � � � � n� ��

These formulae are derived by using results about the ancestral partition in the

coalescent in Kingman 
������ When there are j equivalence classes of ancestors of a

sample of n� then the distribution of the class sizes is the same as the distribution of the

numbers of n balls placed in j cells� uniformly at random� with no cell empty� There are�
n��
j��

�
ordered arrangements with equal probability� The probability that a particular

class has size m is

pn�j
m� �

�
n�m��
j��

�
�
n��
j��

� �

��



since 	xingm there are n�m balls left to arrange into j�� cells� The rate of mutations

while j ancestors that produce a segregating site with m mutations� given Tn� � � � T� is

�

�
pn�j
m�jTj �

�

�
j
j � ��



n� j

m� �

�

m� ���
n�m� ���


m � ���
Tj �

It is also true that P 
N
x� � m j N
x� 	 �� � m���
Pn��

j�� j
��� m � �� � � � � n � ��

Details of the proof of 
��� and 
��� are left for the interested reader to 	ll in�

The distribution function of the last TMRCA of the sequence� generated by the

same parameters as Figure �� for ������� and �� million runs� is shown in Figure ��

The unconditional distribution function of the TMRCA at any 	xed point in ������

F 
t� � � � ���e�t � ���e��t � e��t� t 	 �� is also plotted� F
t� is the distribution

function of T� � T� � T�� The conditional distribution� given the data� has a larger

mean� and smaller variance�

Figure ��

With just four sequences maximum likelihood estimates of � and � would have a

large variance� and this is re�ected in the surfaces being very �at with respect to ��

Because of the �atness and large variances between runs it was impossible to estimate

� and � accurately as could be done with an exact analytical expression for a likelihood

surface� Even so the surfaces suggested that �� is around ������� and �� is around ��������

Example ��

If a mutation occurs at a speci	c site then this leads one to expect a greater

TMRCA there than would otherwise be the case 
cf� equation 
����� Because of the

presence of recombination it follows that� while nearby sites are not completely linked�

they will still have a correlated genealogy� Clearly if there has not been a recombination

event between the two sites their genealogies will be identical� However� even if there

has been one or more such recombinations large parts of the their genealogies will be the

same and the TMRCA 
for example� may still be the same� Thus if a region is observed

to contain many sites at which mutation has occurred� one expects to 	nd even greater

TMRCAs than would be suggested by a single such site� Conversely� the absence of

mutation suggests an early TMRCA 
cf� 
����� Similarly� a large number of sites with

��



no mutations within suggest an even earlier TMRCA� To illustrate this e�ect consider

an example data set of just two individuals of �� bases� neither of which contains any

mutations�

The command line of recom was


recom test�dat ��� ��� ������� ���� �t mrcatimes �x ��

The command line asks for generating values of � � ��� and � � ���� � million

runs are used since� for this data set� the program runs relatively quickly� The estimated

TMRCAs are output to a 	le mrcatimes� The �x option is a system option requesting

a memory allocation of �� times the initial number of sequences for ancestral sequences�

This 	le contains data to produce a graphical representation of the output� shown in

Figure ��

Figure �

The e�ects noted earlier are displayed in this 	gure� Arguing heuristically bases

in the middle of the sequence� which are surrounded by other bases which also show no

mutations� have relatively lower TMRCA due to the in�uence of correlated genealogies�

The bases towards the end of the sequence have fewer such bases in their neighbourhood�


since the sequence ends nearby�� and so have less reduced TMRCA� Because of the

way bases are labelled from � to �� the graph should be symmetric about ����� The

minimum and maximum of the TMRCA times are ����� and ������ The vertical scale in

the graph does not represent a large range� As a comparison the expected TMRCA with

two sequences ignoring the data information is ���� and if there was no recombination


� � �� then the expected TMRCA� given no segregating sites would be 
������ � ����

The TMRCAs in Figure � lie between these values� Having recombination in the model

increases the TMRCAs from ���� The TMRCA curve conditional on the data and that

R � � can be computed by using recom with the switch �b �� This curve is shown in

PF�� together with a theoretical curve calculated from 
��� below� The option �m was

also used to make the rates in the discrete approximation and the continuous model

agree as closely as possible� The theoretical and recom curves are quite close� It is

interesting to note that with the conditioning R � � that they are both below ���� The

derivation of the theoretical curve is as follows� Let R be the number of recombination

��



events that a�ect ancestry in a sample of two sequences� S the number of segregating

sites� and W 
x� the TMRCA at position x on the sequences� A formula is derived for

E
W 
x� j R � �� S � ��� Decompose

E
W 
x�IfR � �� S � �g� � E
W 
x�IfR � �� S � �g� �E
W 
x�IfR � �� S � �g��


���

While there are two sequences of complete length the rates of coalescence� recombination

and mutation are �� �� � so

P 
R � �� S � �� �
�

� � �� �
�

E
W 
x�IfR � �� S � �g� �

Z �

�

u exp
�
�
�� � � ��u

�
du �

�


� � �� ���
�


���

If a single recombination event occurs at a point z� then there are three possible di�erent

types of ancestral graph



a� The left and right recombinant ancestors coalesce 	rst after recombination�


b� The left recombinant ancestor and the complete sequence coalesce 	rst� and


c� The right recombinant ancestor and the complete sequence coalesce 	rst�

Each of 
a�� 
b�� 
c� have probability � � of occurring� Let � be the time to the

recombination event� � the time between recombination and the �st coalescence� and �

the time between the �st and 	nal 
�nd� coalescence� Then if x 
 z�

W 
x� �

�

�
� � � � �� in case 
a��
� � �� in case 
b��
� � � � �� in case 
c��

with the roles of 
b� and 
c� changed if x 	 z�

Just after recombination the rates of coalescence� recombination and mutation are

�� �� �� After the 	rst coalescence� considering only events in the regions without a

MRCA� in case 
a� the rates are �� �� �� in case 
b� �� �
� � z�� �
� � z�� and in case


c� �� �z� �z� These are found from the rates of recombination and mutation being ���

and ��� per unit length�

��



By considering cases 
a�� 
b�� 
c� it follows that

P 
R � �� S � ��

�
�

� � �� �
�

�

� � �� �

�
�

�

� �

� � �� �
�

Z �

�

dz

� � 
�� ��
� � z�
�

Z �

�

dz

� � 
�� ��z

�
dz

�
�


� � �� ���
� � �� ��

�
� �

�
� � �� ��

�� �
� log
� � �� ��

�
�


���

and

E
W 
x�IfR � �� S � �g� �
� �

� � �� �
�

�

� � �� �

�
P 
R � �� S � ��

�
�


� � �� ��
� � �� ��

�
� �


� � �� ���
�

Z x

�

dz


� � 
�� ��
� � z���
�

Z �

x

dz


� � 
� � ��z��

�

�
� �


� � �� ��
�

�


� � �� ��

�
P 
R � �� S � ��

�
�
�� � � ��
� � ��� �� � �
�� ��y��


� � �� ���
� � �� ��

� � �� ��� � �
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���

where y � jx� ���j�

Finally

E
W 
x� j R � �� S � �� �
E
W 
x�IfR � �� S � �g� �E
W 
x�IfR � �� S � �g�

P 
R � �� S � �� � P 
R � �� S � ��


����

It is also straightforward to 	nd P 
R � � j S � �� from 
��� and 
��� which is ������

with � � ���� � � ���� Because of its functional form E
W 
x� j R � �� S � �� is

symmetric about x � ���� with a maximal value at endpoints x � �� �� A plot is shown

in Figure �� with the horizontal scaled to be symmetric about �����

Figure 	

��



The TMRCA curve was computed using recom for another data set of two se�

quences of length 	fty bases with the �st sequence having mutations at sites ��� ��� and

the second with a mutation at site ��� An estimate based on the number of segregating

sites was ��S � ���� recom was run with � � ���� � � ��� for illustration� The e�ect

of mutations lengthening the TMRCA is clearly shown in Figure �� though the range

of the curve is small� The times are of course more than those for two sequences with

no mutations shown in Figure �� If there were no recombination in the model then

the expected TMRCA� given three segregating sites is ��
� � �� � �� The expected

TMRCA at a point� given a mutation there is ���� calculated from 
���� The whole

TMRCA curve in Figure � is above �� and below ��� because recombination increases

the TMRCAs at mutation sites� but linkage is still tight enough to also increase the

TMRCAs at sites nearby� recom was rerun with � � ���� � � ���� The TMRCA curve

is also shown in Figure �� The in�uence of mutations is similar to when � � ���� but

because there is less linkage the range of the curve is greater� with times at mutation

sites and decreased TMRCAs in long regions with no mutations 
cf� positions �������

Example ��

A sample of �� sequences was simulated with � � ���� � � ��� using the urn scheme

in Gri�ths et al� 
������

Sample sequences are shown in Figure �� with multiplicities on the left� The input

	le to recom� using a discrete approximation of ��� bases is shown in Table �� The

symbolism !n denotes a block of n zeros� and only the nine segregating sites are shown

in full�

The command line of recom was

recom test�dat ��� ��� ������� ������� �b �f ��� ��� �� ���� ��� �� test�f �c test�c �q

test�q �t test�t �w test�w �p test�p

Program options are shown earlier in this paper� The command line requests

recom to use the data 	le test�dat with generating values for the Markov process of

� � ���� � � ���� use ��������� runs with random number seed �������� Option �b is

a system option to return � for low probability paths discussed later� Output from the

various options is sent to 	les named test��� The surface option �f requests a likelihood

��



surface for ranges � in ��������� and � in ����������� There are �� increment values for �

and �� for �� producing increments of �����

Figure 
�

Table ��

Recombination must have occurred between segregating sites � and � at �����

and ������ but apart from this pair all other pairs are consistent with the in	nitely�

many�sites�model� Actually in the simulated sample there were three recombination

events in material ancestral to the sample� at ������ ������ ������ There does not

seem to be evidence of the 	rst two recombinations in the data� If the �th mutant

site is ignored� and it is assumed that recombination has not a�ected the mutation

pattern at other sites� then a genealogical tree in the sense of Gri�ths et al� 
����� can

be constructed and is shown in Figure �� In this tree vertices represent mutant sites

numbered ��� corresponding to data in Table �� The �th site is superimposed to show

its inconsistency� A site is in an ancestral path from a sample sequence to the root if it

appears as mutant on the corresponding sequence in Figure �� Multiplicities are shown

at the tips of the tree� The arrangement of sites within the sets f�� �� �g and f�� �g in

the tree is not unique� It appears that with just one recombination event a�ecting the

site con	guration the recombination graph must take the form in Figure �� The seven

sequences with mutation � could join on either the left or right above � or ��

Figure ��

Figure ���

Characteristics of the likelihood� and ancestral distributions� conditional on the

data were explored using recom with ��������� replicates� with generating parameters

�� � ���� �� � ���� Likelihood calculations for a sample of this size require a substantial

computer and time committment� On a Dec alpha AXP�� the run time was ���� hours�

recom has a switch to abort paths which have a small functional value and return zero

for the estimated likelihood for such a run� If
Q�

� f
X
k��X
k ��� 
 � for � 
 � in 
��

��



and 
A��M��n�� is the con	guration at � � �� then the expected single run estimate

from this point�

�Q
A�M�n� �

�Y
�

f
X
k��X
k � ���Q
A��M��n�� 
 ��

Choosing � appropriately allows paths which have a small functional to be determined

early� improving the algorithms speed� With recom on this data set ��������� runs

returned zero� This seems absurd at 	rst sight� but the reason is that the process with

transitions 
�� is contrived� and may have quite high probability paths which return a

low functional value�

The likelihood surface for 
�� �� is shown in Figure ��� The maximum likelihood

estimates from the surface are �� � ����� �� � ��� with a likelihood of ����	 ������ It is

di�cult to give accurate variance estimates for �� and ��� A second replicate computation

gave a very similar likelihood surface� with estimates �� � ���� and �� � ���� There may

be a large evolutionary variance associated with them� but in this example the estimates

are quite accurate� The inverse of the information matrix� calculated approximately by

	nite di�erences from the maximum point and eight points symmetrically about this

point with a step size of ���� was



����� ������
������ ������

�
�

If this was a good estimate of variance� then sd
��� � ������ and sd
��� � ������ with a

correlation between the estimates of ������� The estimates are� however� unlike usual

repeated sampling estimates� Even if the total population frequencies were known�

then it is not clear if � and � would be determined with probability �� If there is no

recombination then � can be determined with probability � from the entire population�

so we suspect that this holds in the more general model with recombination� It is

di�cult to tell if estimates from the information matrix are reasonable� but they are

not outrageous�

To check the e�ect of the generating values of the process the computation was

repeated with �� � ���� �� � ���� The likelihood surface was similar to that in Figure

��� and the estimated parameters were �� � ����� �� � ���� with likelihood ����	 ������

��



The smaller likelihood suggests that the former estimates are better� A mutation rate

estimate just using the fact that there are S � � segregating sites in a sample of ��

sequences is ��S � ��
P��

i�� i
�� � ����

The distribution of the number of recombination events� a�ecting ancestry� and

in ancestral material� are shown in Table �� There is little di�erence between the

distributions� The mean and standard deviations are � � ������ � � ������ the same

to three decimal places for both distributions� This is consistent with �� � ��� since the

expected number of recombinations in ancestral material 
not conditional on the sample

con	guration� is estimated by ��
P��

i�� i
�� � �����

A histogram along the sequences of the expected number of recombination hits�

given the data� is shown in Figure ��� This shows a higher recombination rate per base

around the right end of the sequences� The TMRCAs along the sequences are shown in

Figure �� for two replicated computations� each with ��������� runs� The time is longer

at the right end which seems consistent with recombination being in this region� The

minimum occurring in one replicate is unreliable� Apart from the minimum the two

replicates have a similar shape� indicating some reliability� Unfortunately the TMRCA

mean curve given the data cannot be estimated very accurately because the order of

magnitude of the range of the curve tends to be of the same order of magnitude as the

simulation standard deviation� In this example the simulation standard deviations along

the sequences were in the range 
����������� The standard deviation of the TMRCA

distribution is a di�erent concept� and was estimated to be about ��� at positions along

the sequence� The mean and standard deviation of the last TMRCA are ���� and �����

At a detailed level the expected TMRCA at mutant sites� the expected age of mutant

sites given the data� and a comparison of these times just conditional on the number of

mutant sequences are shown in Table �� Of course the estimates from recom should

be best� but the comparison is interesting� Mutant sites which were present in higher

numbers of sequences have larger TMRCAs and ages in both computations� though 
as

expected� the variation is more when just conditioning on single sites� As the amount

of recombination increases sites behave more independently and 
���� 
��� will be more

accurate� To illustrate this results from a computation with � � ��� are shown in the

Table� The TMRCAs are closer to the pointwise values than with � � ���� but this

doesn�t hold for the ages� Apart from the comparison with the pointwise formula� it

��



is of interest to see where mutations occur in the ancestry relative to the TMRCA at

mutant sites�

Overall the expected TMRCA and age conditional on mutation at a site� computed

from 
��� and 
��� are ������ ������ The larger TMRCA times are consistent with high

numbers of mutant sites at positions ������ ����� ������ ����� in both graphs�

Table ��

Normally one would rerun recom on the data set with new generating parameters

equal to the parameter values estimated here� to 	nd the characteristics of ancestral

distributions� however in this example the estimated parameters were so close to the

generating parameters that the program was not rerun� Mutations are shown in relative

age order in Figure �� The fact that recombination must have occurred in the interval


������������ makes the distribution of ages at sites within the set f�� �� �g asymmetric

because of their positions� If the recombination split in Figure �� was at z� then an�

other consistent recombination graph could have any of the mutations from f�� �� �g at

positions less than z appearing in the right recombinant ancestor before mutation ��

Figure ���

Table ��

Figure ���

Figure ���

Figure ���

Another data set shown in Figure �� was simulated with � � ���� � � ����

Figure ���

The likelihood surface generated using recom with parameters �� � ���� �� �

��� is shown in Figure ��� The maximum likelihood estimates were �� � ���� �� � ���

��



consistent with � � ���� A mutation rate estimate just using the fact that there are

S � �� segregating sites in a sample of �� sequences is ��S � ���� quite close to �� � ����
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Table �

Number of recombination events�

rho mean sd

��� ������ ������
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Table �

Recombination events in regions


number� and average per base�

Sequence Region

rho ������� ������� ������� �������

��� ������ ������ ������ ������

������ ������ ������ ������
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Table �

Mean and sd of ages of mutations�

Mutation position

rho ��� ��� ���
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Table �

Sample sequences with multiplicities�

� 
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Table �

TMRCA and ages of sites�

mutant site � � � � � � � � �

position ���� ���� ���� ���� ���� ���� ���� ���� ����

mutant sequences � �� � � �� � �� � ��

TMRCA� recom� � � ��� ���� ���� ���� ���� ���� ���� ���� ���� ����

TMRCA� recom� � � ��� ���� ���� ���� ���� ���� ���� ���� ���� ����

TMRCA� given m ���� ���� ���� ���� ���� ���� ���� ���� ����

age� recom� � � ��� ���� ���� ���� ���� ���� ���� ���� ���� ����

age� recom� � � ��� ���� ���� ���� ���� ���� ���� ���� ���� ����

age� given m ���� ���� ���� ���� ���� ���� ���� ���� ����

��



Table �

Recombination events distribution� given data�

R� a�ecting ancestry� Ra in ancestral material�

r P 
R � r� P 
Ra � r�
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