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ABSTRACT

We compare and test several models of microsatellite evolution found in the
literature in a likelihood framework using genomic data from homologous mi-
crosatellite loci in humans and chimpanzees. Hypotheses regarding the relative
significance of many qualitative features are tested using classical likelihood ra-
tio tests and the information-theoretic Akaike information criterion. These may
include: (i) proportionality in the mutation rate; whereby long microsatellites
mutate more frequently than shorter ones, (ii) bias in the mutational process;
whereby the probability of a contraction upon mutation may depend on re-
peat length and (iii) phase of the mutations, whereby mutations result in the
instantaneous loss or gain of 1 (one-phase) or more (two-phase) repeat units.

A proportional-rate, linear-biased, one-phase model emerges as the best
model. A focal length towards which the mutational process is linearly bi-
ased in the presence of rate proportionality, is a crucial feature of microsatellite
evolution. Such a focal bias may be due to the counteracting forces of replica-
tion slippage and repair and/or natural selection against longer microsatellites.
We find little support for a two-phase model, in which more than one unit of
repeat length may be gained or lost by a single mutation. We also assess the
performance of these models based on the fit of their stationary distributions
to the empirical distribution of microsatellite lengths in the human genome and
find the results to be consistent with those based on the human and chimp
comparison.

The mutational mechanisms of AC-repeats are found to differ significantly
from those of AT or AG-repeats. Microsatellites interrupted by even a single

point mutation exhibit a two-fold decrease in their mutation rate and a four-fold



decrease in the per-repeat unit slippage rate when compared to pure AC repeats.
Some competing theories explaining the phenomenon of longer repeat length in
humans relative to those in the chimpanzees are explored. In general, models
that allow chimps to have a larger per-repeat unit slippage rate and/or a shorter
focal allele compared to humans give a better fit to the human-chimp data
as well as the human genomic data. Species-specific differences in mutational
mechanisms as well as relaxation of selection against longer microsatellites in

humans are compatible with the data.
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Chapter 1

INTRODUCTION

Microsatellites are tandem repeats of short DNA motifs between two and five
base pairs, usually characterized by their repeat length. Their high length vari-
ability, genome-wide distribution, and abundance make them useful for evolu-
tionary and population genetic inference in areas as diverse as molecular foren-
sics, parentage testing, molecular anthropology, conservation genetics, and in
studies of human evolutionary history [19]. Population genetic inferences may
be sensitive to the assumed model of microsatellite evolution. Therefore, much
focus has centered on the development of biologically realistic models. However,
there has been relatively little focus on testing and comparing these models us-
ing real data.

The simplest popular model of microsatellite evolution is the classical step-
wise mutation model (SMM) of Ohta and Kimura [24] in which, upon a muta-
tion, one repeat unit is either gained resulting in an expansion or lost resulting in
a contraction. However, a small proportion of mutations have been observed to
change the repeat length by more than one unit [17] [16]. The two-phase model
(TPM) of Di Rienzo et al [9] addresses this by allowing mutations of 1 repeat
unit (one-phase) with probability p, and mutations of >1 unit(s) (two-phase)

with probability 1—p, while the distribution of the lengths of multi-unit muta-



tions is geometric. In a simpler two-phase model of Fu and Chakraborty [13]
mutations of length > 1 are geometrically distributed. Under the SMM and the
TPM, a microsatellite is assumed to mutate at a constant rate, irrespective of its
repeat length, which may be any integer. Moreover, under these models there
is no bias toward an expansion or a contraction, and thus the microsatellites
are expected to grow or contract unconstrained over time. While constraining
the range of repeat lengths through a model with reflecting boundaries [12] can
circumvent this problem of unbounded growth, the biological reality of such a
defined boundary is unclear.

Evidence for length dependent effects on mutation rate [10], whereby longer
microsatellites mutate more often than shorter ones, and the presence of point
mutations in some repeats, make the proportional slippage (PS) model of
Kruglyak et al [20] and its extensions by Calabrese et al [6] attractive. In
the symmetric PS model, an equilibrium distribution of repeat lengths exists
through a balance between slippage events and point mutations [20]. Various
mutational biases have been observed including an upward bias favoring ex-
pansions in humans [1] and barn swallows [29], an excess of contractions in
long microsatellites of yeast [35] and fruit fly [15], and the rate of contrac-
tions increasing exponentially with repeat length in humans [37]. Thus, models
that incorporate mutational bias are biologically appealing. In the presence of
a linear bias toward a target or focal length, as proposed by Garza, Slatkin,
and Freimer [14], microsatellites below the focal length tend to expand, and
those above it tend to contract. Other models emphasize mutational bias by
allowing the probability of an expansion upon mutation to be independent of
repeat length [13] or be dependent on it exponentially, linearly, quadratically,

or piece-wise linearly [5].



Thus, broadly speaking, there are at least three qualitatively contrasting
features in the existing models of microsatellite evolution. The first is one-phase
versus two-phase mutations. The second is mutation rate proportionality, the
proportional dependence of mutation rate on repeat length, versus rate equality.
The final contrasting feature is the presence or absence of mutational bias,
whereby the probability of expansion upon mutation may depend on the repeat
length of the mutating microsatellite in one form or another. We only address
constant bias, where the probability that a mutation results in an expansion
is constant for all alleles, and linear bias, where this probability varies linearly
with repeat length.

We test the relative significance of these contrasting features, as embodied
by variants of some popular models and their hybrids, using data from din-
ucleotide loci homologous between humans (Homo sapiens) and chimps (Pan
troglodytes), through likelihood ratio tests (LRT's) and the Akaike information
criterion (AIC). Complications to the mutational process from variation in re-
peat motif as well as interruptions by point mutations are also explored. We
address the question of longer repeat length in humans compared to chimps
through a lineage-specific analysis.

Comparison of models in the past has often been limited to establishing the
supremacy of some particular class of models over another simpler class. Using
homologous loci from humans and chimps, Webster et al [34] have shed light on
the heterogeneity in the mutation process through a descriptive analysis. We
provide a rigorous statistical framework to compare several popular microsatel-
lite models used by biologists as well as test motif-specific and lineage-specific
hypotheses about mechanisms underlying microsatellite evolution using species-

pair data.



Chapter 2

THEORY

For mathematical convenience, most models of microsatellite evolution assume
that a microsatellite can attain any integer in repeat length. We analyze only
those models whose behavior can be approximated by Markov Chains on a trun-
cated state space S = {k,k + 1,---,Q}, the set containing all possible repeat
lengths a microsatellite is allowed to attain. We denote a microsatellite allele
by its repeat length 7. Truncation of the state space from above is biologically
reasonable, as microsatellites are rarely longer than Q (a few tens of repeat
units), and that from below ensures that x is greater than the threshold re-
peat length above which mutations in length occur that are characteristic of
microsatellites [30].

The data D is a 2 X N matrix of microsatellite allele lengths from N loci
homologous in humans and chimps. We model the distribution of D by superim-
posing three Markov chains, X(®, X() and X", on the ancestral, chimp, and
human branches, respectively, of the two taxa tree 7, as shown in Figure 2.1. In
T, each of the two terminal branch lengths, A. and ), represents the product
of mutation rate at allele k and number of generations along the chimp and
human lineages, respectively. We assume that the time to coalescence for a pair

of homologous alleles, within the ancestral population, is negligible relative to

4



the time since the human-chimp speciation.
Let 0@ 0 and ©® be parameters of the Markov chains X, X() and
X ™) wwith transition probability matrices, P(® P and P® respectively. For
an ergodic continuous time Markov chain, its transition probability matrix P ()
= (P;;)}}=x = exp{QA}, where Q := (g;;)],— is its infinitesimal generator or
rate matrix. The stationary distribution of such a Markov Chain, denoted by
7 = (Mg, Tet1, -+ ,Tq), is the unique probability distribution on S satisfying the
matrix equation wQ = 0 = (0,0,---,0) (see for e.g. [3]). Interest in P()\) and
7 arises because they determine the likelihood function L; in Equation (2.1).
Let w(® be the stationary distribution of the ancestral chain. Defining
® = (0@, 0, 0M) and A := (A, \x), the likelihood, given homologous
allele length data D; = (C;, H;) at locus ¢ is:
(©,D;) = 3" W PO (M) P (). (2.1)
j€ES
Since we do not know the ancestral state, the likelihood may be thought of as
a weighted sum over all possible ancestral states, where the weights come from
the stationary distribution of the ancestral chain. Assuming independence (free
recombination) among the N loci, the likelihood, given the entire data D, is

obtained by multiplication.

N
L(©,AD) =[] Li«(©,ADy). (2.2)
=1

2.1 Model M

We start by defining a general model M, in which all other models of interest

are nested. A continuous time Markov Chain X™ on S is defined with an



ancestor (MRCA)

chimpanzee human

Figure 2.1: Markov Chains on the branch leading to the ancestor (X (), chim-
panzee (X(9)), and human (X®)



infinitesimal Generator Q™ given by,

pli,s) a(u,v,1) (p + (1 —-p) v(m,1,5)) , i=j-1
B(i, s) a(u,v,i) (1 —p) v(m,i,j) , 1<j—1
Gij =4 B(i,5) (L= a(u,v,9) (p +(1=p) y(m,i,5)), i=j+1 (23)
Bi,s) (1 = afu,v,i)) (1 =p) v(m,1,j) , i>j+1
(= Diny G i= .

where, the functions a, 8 and 7 are defined as follows,

pli,s) = p(l+(i—kK)s),
a(u,v,i) = max{0,min{l,u —v(i — k)}},

m(1—m)li—Jl-1

()T k<1<j <

’Y(m’ 1;1 j) =

m(1—m)li—Jl-1
1_(1_m)i7m I

k<jg<i<Q.
Allele ¢ mutates at rate f(i,s). The proportional dependence of muta-
tion rate on repeat length is captured by the proportional rate parameter

s € (— o0). When s=0, alleles of all lengths have the same mutation

T
rate 4 € (0,00) of allele k. Observe that 1/5(i, s) is the average amount of time
spent by a microsatellite locus in an allele of repeat length i (mean holding time
in allele 7).

Upon a mutation at allele i, the probability that it is an expansion is
a(u,v,1), and that it is a contraction is 1—a(u, v, ). In the function a(u,v,1),
the constant bias parameter is v € [0,1] and the linear bias parameter is
v € (—00,400). If u=0.5 and v=0, we have a symmetric unbiased muta-
tional process in which the probability that a mutation is an expansion or a

contraction is equal. If v=0, then a(u,v,i)=u € [0, 1] for any allele i, and we

have a model with constant mutational bias. Furthermore, we have a linear



mutational bias when v#0. If 0.5 < u < 1 and “Q_—_O,f < v < 00, we have a
focal allele near ((u—0.5)/v)+ &, at which the probability of contraction equals
that of expansion (a(u,v, f)=0.5), and towards which the mutational process
is linearly biased. So, when ¢ < f, the mutational bias is upwards, towards f,
since a(u,v,7) > 0.5, and when ¢ > f, the bias is downwards, towards f, as
au,v,1) < 0.5.

When p=1, any microsatellite allele mutates (i.e. expands or contracts)
by only one unit of repeat length, but when p is less than 1, it mutates by
one or more unit(s) of length with probability 1—p and by one unit of length
with probability p. Given that an allele 7, undegoes a multi-step mutation,
the probability of expanding or contracting by & units is given by ~v(m,1,7), a
conditional geometric distribution with success probability m.

Observe that for every allele 1, Zy:iﬂ y(m,i,j) = Z;;L v(m,i,7) = 1. The
probability of a transition from allele ¢ to j in ¢ generations, under model M,
with a mutation rate u at &, is given by B ()), where A = p t.

Below we describe how some of the common models of microsatellite evolu-

tion arise as special cases of this more general model.

2.2 Submodels of M

The equal-rate unbiased one-phase model (EU1) is a truncated version of one
of the simplest models of microsatellite evolution, namely, the SMM of Ohta
and Kimura. The equal-rate, constant-biased, one-phase model (FC1) embod-
ies constant bias towards expansion in the mutation process by constraining
a(u, 0,7)=u for any allele i. Observe that u does not vary with allele length in

the EC1 model, as v, a linear bias parameter, is set at 0. Freeing v allows a



linear mutational bias as embodied by the equal-rate, linear-biased, one-phase
model (EL1), with a mutational bias towards a focal allele f, akin in spirit to
the mutation scheme introduced by Garza, Slatkin, and Freimer [14]. Note that
EL1 is related to the simplest version of the PLBias model of Calabrese and
Durrett [5].

The equal-rate, one-phase models, EUI1, EC1, and EL1, have s set to 0, mak-
ing the mutation rate, 5(i, s)=pu, equal for all alleles, unlike their proportional-
rate, one-phase cousins, PUI, PC1, and PL1, respectively, which allow s to

take values in ( 00). The proportional-rate, unbiased, one-phase model

e
(PU1) is akin to the proportional slippage without point mutations model
(PS\0OM) of Calabrese et al [6]. Our proportional rate models differ from those
in the literature because we use an affine function (1 + (i — k)s)), instead of a
linear function ((7 — )s), to relate a microsatellite’s mutation rate to its length
1, in order to embed the equal-rate model within the proportional-rate model.
Note that the proportional-rate, constant-biased, one-phase model (PC1) and
the proportional-rate, linear-biased, one-phase model (PL1) address the effects
of mutational bias and rate proportionality simultaneously in a nested setting.

In all six models discussed so far, alleles mutate by only one unit of repeat
length, since p and m are set at 1. When p < 1 and m < 1, we have their
two-phase cousins in the spirit of DiRienzo et al, namely, FU2*, EC2*, ELZ",
PUZ, PCZ, and PLZ2*, respectively, which allow both single-step and multi-step
mutations instantaneously. However, in these two-phase models, the parameters
p and m are nonidentifiabile at the boundaries (p = 1 or m = 1). We rectify
this by a single-valued transformation T'(p, m)=(p*,m*) as described in the
appendix. Henceforth, p and m in these models will denote the identifiable p*

and m*, respectively, for notational simplicity.
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It is also possible to obtain the six one-phase models from model M by
setting p at 0 to allow mutations of length > 1 and setting m at 1 to force
the geometric distribution to put all its mass on one-step mutations. When,
m < 1, we have their two phase cousins in the spirit of Fu and Chakraborty,
namely EU2, EC2, EL2, PU2, PC2, and PL2. Since these models capture the
qualitative features of one-phase and two-phase in a simpler and identifiable
manner, we will preferentially employ these models for inference.

The equal-rate, unbiased, two-phase model (EUZ2*) is a truncated version of
the TPM of DiRienzo et al. Observe that for every state ¢, as m approaches 0,
7v(%, j) approaches two uniform distributions on {i+1,--- ,Q} and on {x,--- ,i—
1}, above and below i, respectively. Therefore, our EU2* model approaches a
p:(1—p) mixture of the truncated version of Ohta and Kimura’s SMM and Crow
and Kimura’s K-allele model (KAM) [8], which allows mutations uniformly
between finitely many states, on each side of 7. The equal-rate, constant-biased,
two-phase models (EC2 and EC2*), and the equal-rate, linear-biased, two-phase
models (EL2 and ELZ*) add constant and linear bias, respectively to their
unbiased cousins (EU2 and EUZ").

The proportional-rate, two-phase models, PU2 or PU2*, PC2 or PC2*, and
PL2 or PLZ*, add rate proportionality to their equal-rate, two-phase cousins,
EU2 or EUZ*, EC2 or ECZ*, and EL2 or EL2*, respectively. The proportional-
rate, unbiased, two-phase model (PUZ2*) is a hybrid of the truncated versions of
Ohta and Kimura’s SMM, TPM, and a variant of PS\OM. The most general of
this nested family of models, is the proportional-rate, linear-biased, two-phase
model (PLZ*), which is exactly our model M. See Table 2.1 for a description

of the various homogeneous models described above.
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Table 2.1: Model Description

| Models | i—it1] i—>i—1]
EU1 0.5 0.5
EU2 0.5 y(m,i,i+1) 0.5 y(m,i,i — 1)
EUZ |05 (p+ (1 —p) y(m,i,i+1)) 0.5 (p+ (1 —p) y(m,i,i—1))
EC1 U (1—u)
EC2 u y(m,i,i+ 1) (1 —u) y(m,i,i—1)
PU1 B(i,s) 0.5 B(i,s) 0.5
PU2 B(i,s) 0.5 y(m,i,i+ 1) B(i,8) 0.5 v(m,i,1 —1)
PC1 B(i,s) u B(i,s) (1 —u)
PC2 B(i,s) u y(m,i,i+1) B(i,s) (1 —wu) y(m,i,i+ 1)
EL1 a(u,v,1) (1 - a(u,v,i))
EL2 a(u,v,1) y(m,i,1+ 1) (1 —a(u,v,7)) y(m,i,i+ 1)
PL1 B(i,s) a(u,v,3) y(m,i,i+1) | 8(3,s) (1 — alu,v,3)) y(m,i,i+ 1)
PL2 B(i,8) a(u,v,3) y(m,i,i +1) | B(3,s) (1 —alu,v,3)) y(m,i,i+1)
| Models | i+ i—>i—k*t]
EU1 0 0
EU2 0.5 y(m,i,i+ j) 0.5 y(m,i,1— k)
EU2* 0.5 (1 —p) v(m,i,7+ 7) 0.5 (1 —p) y(m,4,1 — k)
EC1 0 0
EC2 u y(m,i,i+ j) (1 —u) y(m,i,i—k)
PU1 0 0
PU2 B(i, s) 0.5 v(m, i,i + §) B(i, s) 0.5 y(m,i,i — k)
PC1 0 0
PC2 B(i,s) u y(m,i,i+ j) B(iys) (1 —u) y(m,i,i — k)
EL1 0 0
EL2 a(u,v,i) y(m,i,i+ j) (1 - a(u,v,7)) y(m,i,i — k)
PL1 0 0
PL2 | (i, s) a(u,v,i) y(m, 4,5+ 7) | B(i,s) (1 — a(u,v,i)) y(m,i,i— k)

Twhere,mﬁiﬁﬂandlﬁjgﬁ—i
J:where,mgigﬂandlSkgi—,‘q



12

2.3 Stationary Distribution of one-phase mod-
els

Observe that all the one-phase models including PL1 are special cases of the
general birth-death chain with birth and death rates b; and d; representing
the rate of expansion and contraction, respectively, of allele 7 by one repeat
unit. Using the convention H;”;i () = 1, the stationary distribution 7;, up to a
normalizing factor, is given by,

7rzo<Hd

j+1
Thus, for the PL1 model with birth rate a(u,v,7) x 5(i,s) and death rate

(1 —afu,v,1)) x B(3, s),

LTI o(u,v, ) B, 5)
i H(l—a( (2.4)

u,v,7+1)) B(G+1,s)

J=K
i—1 (u,v, ) -
> g(l—a(uvj+1 ]1_[ j+1s

1 = a(u, v, j) .
. 1+(i—f~€)sj11(1—oz(u,v,j+1))
2.4 Repeat-Specific Models

The presence or absence of any significant difference between the mutational
mechanisms of two distinct types of dinucleotide repeats can be investigated.
The distribution of D!, the data of type I, is modeled by superimposing a markov
chain model X' with parameters ©' on the three branches of 7 with terminal
branches of equal length A\'. D', the data of type II, is modeled in a similar
manner, by X" with its respective parameters and branch length. Thus, akin

to equation (2.2), our likelihood function for the data (D', D), where D' is a
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2 x N' matrix, and D" is a 2 x N matrix, is as follows:

L(6%, 0, X', A1|(D*, DY) := (2.5)

1Y, L@, x(DY) TIY, Li(©™ A" DY)
2.5 Likelihood Ratio Test (LRT)

Suppose we want to test the null hypothesis Hy:(®, A) = (®g, Ao), against the
alternative hypothesis, H1:(©, ) € (01, A1). The likelihood ratio test statistic

(LRTS) given by,
L(©g, Ao|D)

sup L(©,A|D)
(©,A)

-2 log (2.6)

is asymptotically x? distributed under the null hypothesis, where z is the differ-
ence in the number of parameters between the two hypotheses, under standard
conditions [7]. We reject the null hypothesis if the observed LRTS is extreme

enough to give a P value < 0.01.

2.6 Model Selection

Given an a priori set of candidate models, they can be ranked from the best to
the worst, in an information-theoretic paradigm through AIC,, a second-order
Akaike Information Criterion. This ranking can help distinguish models that
are nearly equally good fits versus those that are poor explanations for the
given data D of sample size N. The best candidate model with a total of K

parameters in (©®, A), is the one which minimizes the quantity,

K(K+1))-

N R 1 (2.7)

AIC, := —2log L(©®,A|D) + 2 (K +

We use AIC, (see [32] and [18]), the second-order estimator of the Kullback-

Liebeler information, instead of the first order estimator AIC or the asymptot-
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ically unbiased estimator TIC, because N/ max{K} is small in our study (for
discussion see [4]). It is worth highlighting that AIC, is an estimator subject to

stochastic noise in the data.



Chapter 3

DATA

In order to find the most number of homologous loci in the pair of primates,
while minimizing ascertainment bias and sequencing error, we first obtained
21.4 million base pairs of the Pan troglodytes (chimp) sequences in HTGS (high
throughput genomic sequence) [25] phase 3, available by March 4, 2003, through
the Entrez retrieval system of NCBI (http://www.ncbi.nlm.nih.gov/Entrez/).
The sequences in HTGS phases 0, 1, and 2, were excluded to minimize sequenc-
ing error and circumvent the problem of aligning the unordered pieces. For
all analyses in this study we set the lower bound k=10. Chimp microsatellites
of dinucleotide motifs with repeat length > 10 were mined. To assure some
level of independence, all microsatellites within 200 base pairs of another were
discarded.

Each selected chimp microsatellite, with 200 base pairs of flanking sequence
upstream and downstream, was used to perform an extremely stringent (E-value
<1 x 107'%) unfiltered BLAST search against the human contigs downloaded
from the August 23, 2002 NCBI release at ftp://ncbi.nlm.nih.gov/genomes
/H_sapiens/, using formatdb and blastall (2.2.3 release) of the NCBI Toolkit
in ftp://ftp.ncbinih.gov/toolbox/ncbi tools/. Thus we obtained 644 candidate

microsatellite loci homologous between the two primates.

15
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Each such microsatellite locus was retained if it had a flanking sequence
of length > 200 base pairs on at least one side of the di-nucleotide repeat in
both species, and a flanking sequence of length > 50 base pairs on the other
side in both species. A compound repeat is defined to have more than one
motif, each of repeat length > 10, within a 50-basepair radius. 30% of loci
contained compound repeats in at least one of the homologs and were excluded
from further analysis. Finally, those loci whose simple repeats in at least one
species, were interrupted by two or more point mutations were omitted. Thus
383 candidate loci were obtained. About 70% of these loci occurred in human
chromosome 7 (see Figure 3.1). 15% of these 383 loci were ommitted as their
human homologs were < 9 units in repeat length. Among the remaining 321
loci 78% were AC-repeats (namely, AC,CA TG, and GT repeats), 13% were AT-
repeats (namely, AT and TA repeats), 9% were AG-repeats (namely, AG, GA,
TC, and CT repeats), and 0% were CG-repeats (namely, CG and GC repeats).

Among these 321 loci, 18% contained homologous pairs of once-interrupted
dinucleotide repeats, which have exactly one point mutation interrupting an
otherwise pure stretch of the repeat in either or both species. We count the
repeat length of a once-interrupted AC-repeat (iAC-repeat) ignoring the inter-
ruption. For instance, the iAC-repeat ‘ACACATACAC’ is taken to be of length
5. The common practice in the literature of directly extrapolating the repeat
length of a microsatellite from its PCR fragment length is the motivation behind
such a characterization of repeat length for an interrupted microsatellite.

Thus we found 321 homologous pairs of simple dinucleotide repeats with
at most one interruption, of which 264 were uninterrupted or pure dinucleotide
repeats and 235 were pure AC-repeats. This constitutes our basic human-chimp

data set. The empirical joint and marginal distributions of homologous pure AC-
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Figure 3.1: Distribution of candidate dinucleotide microsatellites across human
chromosomes.

repeat data is shown in Figures 3.2 and 3.3 respectively. We also obtained the
human genomic data of perfect (devoid of interruptions) and isolated (at least
50 basepairs from the nearest dinucleotide microsatellite of length more than
4 repeat units) AC-repeats as described in Calabrese et al [5] for comparative
purposes.

To maximize the likelihood L, we transform the constrained parameter space
to an unconstrained one, and perform an unconstrained optimization using the
function Findminimum of Mathematica [36]. We explore most of the support of
the parameter space by partitioning it into small hypercubes which are used as
initial conditions to find local optima. Finally, the Broydon-Fletcher-Goldfarb-
Shanno algorithm [28] is started near the best local optimum to obtain the

global optimum.
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Chapter 4

RESULTS

We initially assume a lineage-homogeneous mutational process to model the
distribution of the 235 homologous pairs of pure AC-repeats. Thus the same
Markov chain model (i.e., ©,=0,.=0,=0) is superimposed on the three branches
of 7 whose terminal branches are of equal length (i.e., A\.=\,=\). Observe that
for time reversible Markov chains, such as PLI1, we can only estimate the sum
of the terminal branch lengths (2A) along with ©. This is because the per-
locus likelihood given by Equation 2.1 becomes ..« m; Pjc;(A) Pju;(A) due
to lineage homogeneity and further simplifies to 7¢, Pc; u,(2)) due to time re-
versibility. We relax, and even test, these homogeneity assumptions later when

we study repeat-specific and lineage-specific processes.

4.1 Ranking Submodels of M

The submodels of M define the set of candidate models to be ranked from
best to worst according to their AIC, values using equation 2.7, based on data
Djc (see Table 4.1). Five groupings of models are found. The best group
contains the proportional-rate linear-bias models, PL1 and PL2, where longer

microsatellites mutate more often than shorter ones towards an attracting focal

19
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allele. The second best group comprises of ELI and FL2. In these models,
all microsatellites, irrespective of their repeat length, mutate at the same rate
towards a focal allele. The third best group comprises of the constant-bias mod-
els, namely, PC1, PC2, EC1, and EC2. In the presence of a constant downward
bias in the mutational process none of the other features seem to matter very
much. The proportional-rate, unbiased models, PU1 and PU2, constituting the
fourth best group, outperform their equal-rate, unbiased cousins, EUI and EUZ2.
Observe that the model ranking is unaffected by variation in the upper bound
Q) except for the worst group.

Another ranking of the submodels of M is performed as shown in Table 4.2
based on the fit of their stationary distributions to the empirical distribution
of pure and isolated AC-repeat lengths in the human genome as described by
Calabrese et al. [5]. These results are consistent with those based on the human
and chimp comparison. However, when fitting a model’s stationary distribution,
due to the large sample size, any increase in the degrees of freedom toward a

multinomial model greatly increases its likelihood.

4.2 One Phase Vs. Two Phase

The null hypothesis of the simplest, one-phase model EU1 is tested against its
two-phase cousin EU2*, through a LRT. The LRTS under this null hypothe-
sis has a nontrivial mixture of x2, x?, and x3 for its asymptotic distribution,
since both p and m lie on the boundary of the parameter space under the null
hypothesis [31]. Instead of analytically pursuing this asymptotic distribution
under such nonstandard boundary conditions, we resort to parametric boot-

strap to obtain an approximation to the finite sample distribution of the LRTS
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Figure 4.1: Profile Log Likelihood of the parameters, u, v, s and A of the best
model PL1

(see part i. of Figure 4.3). Based on the simulations the one-phase hypothe-
sis prevails (P = 0.16). One is unable to reject EUI in favor of the simpler
equal-rate two-phase unbiased model FU2 as well, since the LRTS which is
asymptotically 0.540.5x? distributed is observed to be 0.084 (P = 0.39). Simi-
larly, we are unable to reject the null hypothesis of every other one-phase model,
in favor of its two-phase cousin, except in the equal-rate linear-biased case where
one-phase is marginally rejected (P = 0.013). The EC2 model with p=0, akin
to a truncated version of Fu and Chakraborty’s SMM [13], as well as, PC2 and
PU2 assign almost all of the probability mass to single-step jumps. Hence, in
these cases, we fail to reject the one-phase hypothesis that m=1 in favor of
a two-phase hypothesis that 0 < m < 1. Among the best group of models,

PL1 and PL2, the hypothesis of one-phase prevails as P = 0.06 (see part ii. of



Table 4.1: Parameter estimation, maximum likelihood, and model ranking using species-pair data from 235 loci of
AC-repeats.

Models K ¢ Fixed parameters * and MLEs of free parameters © log L AIC,

U v m s A Q=40 Q=40 Q=60 Q=100
PL2 5 0.8158 0.03947  0.5475 0.7638 0.5646 -1240.2079 0.00 0.00 0.00
PL1 4 0.6246 0.01542 1.0000 0.8752 2.1441 -1241.4802 0.46 0.41 0.44
EL2 4 0.6774 0.03701 0.4317  0.0000 1.7153 -1247.9369 13.37 13.36 13.40
EL1 3 0.5416 0.009464 1.0000 0.0000 12.2643 -1250.3987 16.22 16.17 16.21
EC1 2 0.4650 0.0000 1.0000 0.0000 11.0898 -1294.5354 102.44 107.54 107.83
PC1 3 0.4654 0.0000 1.0000 -0.0048 10.9308 -1294.5243 104.47 109.56 109.85
EC?2 3 0.4650 0.0000 0.9999 0.0000 11.0898 -1294.5354 104.50 109.59 109.88
PC?2 4 0.4654 0.0000 0.9999 -0.0048 10.9308 -1294.5243 106.54 111.63 111.91
PU1 2 0.5000 0.0000 1.0000 0.2802 3.6773 -1342.4756  198.325 275.91 347.17
PU2 3 0.5000 0.0000 0.9999 0.2802 3.6773 -1342.4756 200.38 277.96 349.22
EU1 1 0.5000 0.0000 1.0000 0.0000 10.3296 -1432.3527 376.04 609.98 882.16
EU2 2 0.5000 0.0000 0.9398 0.0000 8.6285 -1432.3107 377.99 609.33 877.11

0,1]° (00, 400)  [0,1] (=2,00)  (0,00) 4+2490.68 +2490.73 +2490.70

— 375

%K denotes the number of free parameters.

®The parameters of model M that are fixed for a given submodel are shown in bold.
“Free parameters take their maximum likelihood estimates (MLEs) when 0 = 40
9The range of each parameter under model M is given in the last row.
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Table 4.2: Parameter estimation, maximum likelihood, and model ranking using human genomic data with 33298 loci of
AC-repeats.

Models K ¢ Fixed values ® and MLEs of parameters © log L AlIC

u v m s Q=40 Q=40 Q=60 Q=100
PL2 4 0.9310 0.0455  0.4224 1.0325  -95087.0592 0.00 0.00 0.00
PL1 3 0.6148 0.0121 1.0000 4.9252  -95095.9213 15.72 285.79 288.15
EL2 3 0.6726 0.0295 0.4310 0.0000 -95251.0395 325.96 321.510 321.24
EL1 2 0.5437 0.0078 1.0000 0.0000 -95371.0969 564.07 681.77 684.13
EC1 1 0.4702 0.0000 1.0000 0.0000 -100116.6430 10053.17 11162.38 11247.39
PC1 2 0.4702 0.0000 1.0000 0.0000 -100116.6430 10055.17 11164.38 11249.39
EC?2 2 0.4702 0.0000 0.9999 0.0000 -100116.6430 10055.18 11164.40 11249.42
PC2 3 0.4702 0.0000  0.9999 0.0000 -100116.6430 10057.17 11166.38 11251.39
PU1 1 0.5000 1.0000 1.0000 0.3166 -104475.0674 18770.02 29951.28 40172.42
PU2 2 0.5000 0.0000 0.9999 0.3166 -104475.0672 18772.02 29953.28 40174.42
EU2 1 0.5000 0.0000 0.9315 0.0000 -114340.2766 38500.44 68484.04 90335.52
EU1 0 0.5000 0.0000 1.0000 0.0000 -114344.9059 38507.70 71446.12 110019.08

0,11 (—00,400)  [0,1] (—,00) +190182.12  +190460.65 +190458.29

— 375

%K denotes the number of free parameters.

®The parameters of model M that are fixed for a given submodel are shown in bold.
“Free parameters take their maximum likelihood estimates (MLEs) with Q = 40
9The range of each parameter under model M is given in the last row.

€¢
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Figure 4.2: Profile Log Likelihood of the two-phase parameter m of the model
PL2

Figure 4.3). Furthermore, there is even less evidence in the data to reject PL1
in favor of PL2* (P = 0.23). The fairly flat profile log likelihood of m under
the PL2* model is shown in Figure 4.2. The confidence interval containing 2

loglikelihood units from the median is [0.42,1].

4.3 Mutational Bias

The absence of any mutational bias as embodied by EU1, is first rejected in
favour of the constant bias model EC1. The maximum likelihood estimate
(MLE) of the constant upward bias parameter 4=0.4650. EU! is also rejected
in favor of the linear bias model EL1.

The hypothesis of constant mutational bias for all alleles, i.e. EC1, is re-
jected in favor of the linear bias model ELI in the absence of rate proportion-
ality. This LRTS is asymptotically distributed as x? under the null hypothesis
(see part iii. of Figure 4.3). The MLE of the attracting focal allele for the linear
bias model ELI was |((¢—0.5)/0) + k] =[((0.5416 — 0.5)/0.009464) + 10 |=14.

In order to investigate the nature of mutational bias in the presence of rate

proportionality we conducted similar LRT's. Once again absence of bias (PU!)
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Figure 4.3: i. 500 simulations of the finite sample LRTS under the null hy-
pothesis for EU1 Vs. EU2*, and 100 simulations each for, ii. PL1 Vs. PL2 ~
0.5+0.5x2, iii. EC1 Vs. EL1 ~ x? and iv. EL1 Vs. PL1 ~ 2. The asymptot-
ically expected distribution in each case is the solid line.

was rejected in favor of its presence (PC1 and PL1) and the hypothesis of
constant bias (PC1) was rejected in favor of linear bias (PL1). The MLE of
the attracting focal allele for the proportional-rate linear-bias model PL1 was
|((.6246—0.5)/0.01542)410|=18. When more general functional forms, such as,
piece-wise linear, quadratic, or cubic, were employed to model the dependence

of mutational bias on repeat length, the likelihood did not improve significantly

enough to reject the linear bias model (results not shown).

4.4 Rate Equality Vs. Proportionality

We test the hypothesis of equal mutation rates for all alleles (EUI) against a
hypothesis of proportional rates (PUI). This LRTS is asymptotically x? dis-
tributed under the null hypothesis. Thus, the null hypothesis of rate constancy

among alleles is rejected, in favour of a directly proportional relationship be-
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tween mutation rate and repeat length ($§=0.2556) in the presence of an unbiased
mutation process.

In order to determine the relevance of rate proportionality in the presence
of mutational bias two more LRT's are performed. In the presence of a constant
bias, we failed to reject the null hypothesis of rate equality among alleles in
favor of rate proportionality (P = 0.022). In the presence of linear bias, the
LRTS is asymptotically distributed as x? under the null hypothesis (see part
iv. of Figure 4.3). We were able to reject rate equality (EL1) in favor of rate
proportionality (PL1). Thus, for pure AC-repeats, the proportional-rate linear-
bias model (PL1) explains the data best.

When performing multiple LRT's in a nested setting, the order in which such
tests are done could affect the final conclusions drawn. We are assured, however,
that this order has not influenced our conclusions, since the results of model
selection are consistent with those of the hypothesis tests. All conclusions drawn
above using the LRT's are robust to changes in the upper bound € (results not
shown).

So far we have only used D¢ for inference and assumed homogeneity in the
mutational mechanisms of all these loci. In doing so, we have ignored inter-locus
variation, and could not address possible motif-specific and interruption-induced
complications. Such issues are examined below using PL1, which emerged earlier

as the best model.

4.5 Inter-Locus Rate Variation

The possible presence of variation in mutation rate among loci of pure AC-

repeats is investigated next. Since A is estimable as the product of p and



Table 4.3: Some hypothesis tests of time homogeneous models through likelihood ratios.

LRT H, Vs. Hy Asym. Dist. * LRTS® pPc
1 EU1 Vs. EU2  0.5x2 + 0.5x% 0.084 0.39

2  EU1Vs. EUZ simul. ¢ 1.060 0.16
3 EL1Vs.EL2  0.5x2+ 0.5 4.92  0.013
4  PL1Vs. PL2  0.5x2+0.5x2 2.54  0.055
5 EUIVs. EC1 % 275.62 < 0.01
6 EU1Vs. EL1 X 363.91 < 0.01
7  EC1Vs. ELI X2 88.27 < 0.01
8 EU1Vs. PU1 % 179.75 < 0.01
9  EC1Vs. PC1 X2 0.022 0.88
10 EL1Vs. PL1 X2 17.84 < 0.01

%The expected asymptotic behavior of likelihood ratio test statistic (LRTS) under the null hypothesis Hy.
Q) is set at 40.

¢P values < 0.01 are considered significant

Simulated finite sample distribution (part i. of Figure 4.3)

LC
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t, variation in mutation rate (u) translates to variation in A, as the number of
generations (t) remains identical for all loci. We model three equi-proportionate
classes of loci, 1, 2, and 3, with distinct mutation rates reflected by, A\;, A9, and
A3 respectively. We are unable to reject the null hypothesis of equal rates
across loci, Hy: A = A1 = Ay = A3, in favor of inter-locus rate variation, Hi:
0 <A < X, 0< Xg < o0, and Ay < A3 < 00, as the asymptotically x32
distributed LRTS is observed to be 0.67 (P = 0.73). We also rejected a simpler

variable rates model with only 2 classes (P = 0.46).

4.6 Motif-Specific Variation

As there are no pure GC-repeats, and only 29 pure AT-repeats or AG-repeats
in our data, only differences in the mutational mechanism between pure AC-
repeats and pure AT-repeats or AG-repeats (AT\G-repeats) are investigated.
The evolution of pure AC-repeats is modeled by a proportional-rate linear-

AC

biased one-phase model with parameters u*°, v*°, s and A, and that of pure
AT\ G-repeats is modeled similarly with parameters v*™\¢, v*™\¢ s and . By

calculating the likelihood according to equation 2.5, we test the null hypothesis

AT\G AT\G

of identical parameters, Hy: u = u®°® = u and v = vA° = vAT\9  against
the alternative of possibly distinct bias parameters, Hy: u*® # u*™¢ and v*° #
v *M\S, The LRTS, which is asymptotically x3 distributed, is observed to be
13.72 (P < 0.01). We thus reject the null hypothesis of identical mutational
mechanisms for AC-repeats and AT\G-repeats. Figure 4.4 plots the probability
of an expansion upon mutation («(a,v,%)) as a function of repeat length 7 based
on the MLEs of the bias parameters for AC and AT\G motif types. The MLE

of the focal allele for AC-repeats is 18 while that for the AT\G-repeats is 20.
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Figure 4.4: Probability of expansion upon mutation, a(, 9,1), as a function of
repeat length based on the MLEs for pure AC-repeats (thin line) pure AT\G-
repeats (dashed line)

However, we were unable to reject the null hypothesis Hy of identical mutational
mechanisms in favor of an alternative which allowed distinct proportional-rate
parameters (¢, s*™\¢) but identical bias parameters (P = 0.74). Furthermore,
the distinctness of bias parameters alone seems to matter as we are unable to
reject this hypothesis (H;) in favor of a more general hypothesis which allowed
distinct proportional-rate parameters in addition to distinct bias parameters

(P = 0.62).

4.7 Interruption-Induced Variation

We study possible effects of an interruption by a point mutation on the evo-
lution of otherwise pure AC-repeats. Recall that the repeat length of a once-
interrupted AC-repeat (iAC) is counted ignoring the interruption. As in the

previous section, the stochastic dynamics of pure AC-repeats is described by a

AC

proportional-rate linear-biased one-phase model with parameters u*°, v*°, s*°

and A, and that of the iAC-repeats is described by another such model with

parameters 4, v*4° and s*° and A. By calculating the likelihood according to
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Figure 4.5: i. Scaled mutation rates; iﬁ(i, §*°) for pure AC-repeats (solid) and
iﬁ(i,éi“’) for once-interrupted iAC-repeats (dashed), as a function of repeat
length. ii. The rate ratio 5(i, $°)/5(i, §°) as a function of repeat length i.

equation 2.5, we test hypotheses through LRT's.

The null hypothesis of an identical mutational mechanism between pure AC-

iAC AC

repeats and iAC-repeats, Hy: v = u”® = v'*°, v = v IAC

= p'A° and s = s4° =

s, is successfully rejected in favor of the alternative which allows distinct
mutational mechanisms; Hi: u*° # u'2°, v2° # v*4° and s*° # s, since the
asymptotically x3 distributed LRTS is observed to be 26.27. The MLE of the
focal allele for AC-repeats is still 18 but that of the iAC-repeats is longer at 21.

The scaled mutation rate %B(i, s) is plotted as a function of repeat length
using the MLEs of the proportional-rate parameters for pure AC-repeats (5¢ =
0.83) and iAC-repeats (§° = 0.37) in part i. of Figure 4.5. The ratio of the
MLE of mutation rate of AC-repeats over that of iAC-repeats which asymptotes
to 0.83/0.37 = 2.24 is plotted in part ii. of Figure 4.5. Unlike the case of
AC vs. AT\G-repeats, the null hypothesis Hy is strongly rejected in favor of a
simpler alternative which assumes identical bias parameters v and v but distinct

proportional-rate parameters s*° and s°. For this test the LRTS which is

asymptotically distributed as x? is observed to be 14.56.
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4.8 Lineage-Specific Variation

Here, we relax the assumption of lineage homogeneity that ©,=0,=0,=0, and
allow distinct Markov chain models to be superimposed on distinct branches
of 7. We study lineage-specific differences in the mutational mechanism only
for the PL1 model. By superimposing a proportional-rate linear-biased one-
phase model with parameters u,, v, and s, upon the ancestral branch, another
such model with parameters u., v. and s. upon the chimp branch, and finally
another with parameters uy,, v, and s, upon the human branch we address
lineage-specific differences in the mutational mechanism of pure AC-repeats.
Naturally, the lineage-homogeneous models studied thus far, in which all three
branches have superimposed upon them three Markov chain models with iden-
tical parameters (u = Uy = Ue = Up, V = Vg = U, = vy and § = S, = S¢ = Sy),
embody the essence of identical mutational mechanisms along the three lineages
and constitute our null hypothesis of lineage homogeneity in the mutational pro-
cess. However, there are numerous ways to model lineage-specific differences in
the mutational process. In fact, the scenario of biased microsatellite expansion
along the human lineage is indiscernable from that of a biased contraction along
the chimp lineage without repeat length data at homologous loci in an addi-
tional outgroup species. Owing to the nature and sample size of our species-pair
data and in light of a human-chimpanzee-baboon study by Webster et al [34],
we introduce non-homogeneity by constraining the ancestral mutational mech-
anism to be identical to that of chimp. Moreover, the non-homogeneous models
which impose an identical mutational mechanisms between the human and the
ancestral species do not have better AIC, scores (results not shown).

We marginally reject (P = 0.018) the null hypothesis of identical mutational
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mechanism for the ancestor, chimp, and human microsatellites of the pure AC-
repeats (PL1 model) in favor of an alternative hypothesis of an almost identical
mechanism for the three lineages with the exception of a distinct proportional-
rate parameter s, for the human lineage (PL1"). Since the various alternatives
are not nested we resort to AIC. to rank the models. The better performing non-
homogeneous models decrease the mutation rate (by decreasing s;) for longer
human microsatellites relative to that of the chimps and/or increase the focal
allele of humans by one or two repeat units as evident from Table 4.4. Similar
two-phase non-homogeneous models did not perform better than PLI" (results
not shown).

We were also able to fit non-homogeneous models much better to the em-
pirical distribution of isolated pure AC-repeats from human genomic data. A
nonhomogeneous PLI model with 7 parameters had a log likelihood value of
—95050.02 and outperformed the time homogeneous PL2 model from Table 4.2
by 96 AIC units. The MLFEs suggest a scenario of ongoing repeat expansion in
humans. Figure 4.6 shows the fits of the homogeneous and non-homogeneous
PL1 model to the empirical distribution of the AC-repeats found in the human

genome.
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Figure 4.7: i. ML estimates of the allele-specific mutation rate 3(z, 8) x 10 for
models PL1, PL2, PU1 and EU1 (dotted line). ii. Confidence interval (CI) for
the allele-specific mutation rate 3(z, 8) x 10° for PL1 model.

4.9 Mutation Rate Estimation

Assuming 5.5 x 10% years since human-chimp speciation and an average lifetime
of 20 years for the two species leads to an estimate of 2.75 x 10° generations
since speciation. Since g = A/t in our formulation, its MLE is ji = A/(2.75 x
10°). Thus the MLE of the allele-specific mutation rate §(%, 8)=/i(1+(:—10)3)
is obtained.

In order to compare it with the estimates of mutation rates in the literature
we obtain an average rate 5* = ) . 7;3(i, §), where 7; is the stationary proba-
bility of allele 7 under the MLEs of the model. For the best model (PL1) * is
4.87 x 107° per locus per generation and for the worst model (EU1) it is 23%
less at 3.76 x 1075. The mutation rate estimates are fairly similar for different
models as shown in Figure 4.7.

Moreover, by walking 2 log likelihood units on either side of the median
along the profile log likelihoods we obtain a confidence interval of [1.1,4.5] for A
and [0.32, 1.8] for s. This translates to a confidence interval for the average per-
locus per-generation mutation rate of [1.3x 107>, 1.8 x 10~%] for pure AC-repeats

under the PL1 model.



Table 4.4: Lineage-specific model ranking.

Models K ¢ Lineage-Specific Parameters log L ® AIC,
U Up v Up S Sh m A - 2487.70

PL1' 5 0.63 0.63 0.016 0.016 1.40 0.0184 1 2.62 -1238.72 0.0

PL1? 7 0.63 0.68 0.016 0.020 1.26 0.42 1 223 -1237.83 2.5

PLP 5) 0.63 0.65 0.016 0.016 0.88 0.88 1 2.10 -1240.12 2.8

PL2 5) 0.82 0.82 0.04 0.04 0.76 0.76 0.55 0.56 -1240.21 3.0

PL1 4 0.62 0.62 0.015 0.015 0.88 0.88 1 2.14 -1241.48 3.4

%K denotes the number of parameters in a model.
"The MLEs and log L when Q was set at 40.
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Chapter 5

DISCUSSION

Species-pair data from humans and chimps provides opportunities for analyzing
microsatellite evolution not found in population genetic data or genomic data
from a single species. A population’s demography determines the distribution
of its genealogy, which in turn accounts for the correlation among homologous
alleles in a population sample . Thus strong demographic assumptions have to
be made [23] to reject one model of microsatellite evolution in favor of another .
Since our inferences are based on a sample of size one from each population, they
do not rely on assumptions regarding the demographic history of the analyzed
populations. Different models can give rise to similar equilibrium distributions
despite distinct finite time transition probabilities. Thus any inference based on
genomic data from a species is limited to parametric families of models whose
members have distinct equilibrium distributions [22]. However, this approach
currently has the advantage of larger data sets over our species-pair approach,
as the chimp genome is not yet fully sequenced. We provide a framework for hy-
pothesis tests directed at a mechanistic understanding of the mutational process
of microsatellites using information about their divergence.

Our analysis indicates that bias in the mutational process and proportional-

ity in mutation rate are vital for realistic stochastic models of evolution of pure
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dinucleotide repeats. All models imbued with an unbiased mutational process
perform poorly compared to their biased counterparts, both in terms of having
high AIC, values, and thereby being ranked the worst, as well as, being rejected
with extreme significance in favor of their biased cousins through LRT's.

The best group of models with the lowest AIC, values are the proportional-
rate linear-biased one and two-phase models, PLI and PL2 respectively. To
decide between PL1 and PL2 we resort to a LRT. The hypothesis of one-phase
embodied by PL1 remains unrejected.

The models with a linear bias toward a focal allele constitute the top four
models. This suggests a primal role for linear bias in microsatellite evolution
and further affirms the findings of Calabrese et al. that proportional slippage
along with point mutations is not sufficient in the absence of mutational bias
to explain the human genomic microsatellite length distribution [5].

The linear-biased models partly achieve a better fit to the data by producing
better approximations to the variances in the marginal distributions of human
and chimp microsatellites. Such a linear bias may be a signature of underlying
counteracting forces in the mutational mechanism. The empirical findings that
upward mutation bias of primary slippage mutations could be countered by the
downward mutation bias at longer alleles due to the mismatch repair system
[16] further strengthen the primacy of linear bias toward a focal allele. Natural
selection could also be contributing to the downward bias by acting directly
against longer microsatellites if they confer some selective disadvantage or by
acting indirectly on the mismatch-repair machinery itself.

The biased models are robust to variation in the upper bound €2, as is ev-
ident from their asymptotic AIC, values, due to the presence of a downward

or focal bias. The unbiased models, on the other hand, do considerably worse
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for larger values of €2, because as microsatellites mutate without preferring con-
tractions over expansions, they distribute themselves uniformly over the entire
state space as time progresses. Thus, when (2 is large, microsatellites can attain
unrealistically large repeat lengths under the unbiased models.

Among the one-phase models, rate proportionality gives a better fit to the
data than rate equality among alleles in the presence of an unbiased or a linear-
biased mutational process. However it does not do so in the presence of a
strong constant downward bias (4=0.46). Under a constant downward bias,
most of the probability mass under stationarity is already piled over shorter
alleles, and thus any increase in rate proportionality will only exacerbate this
trend by reducing the mean holding time of longer alleles and thereby further
reducing their stationary probability. In fact, the small negative value taken by
the proportional-rate parameter (§ = —0.0048) reflects some level of restoration
of probability mass to longer alleles countering the effects of geometric decay
caused by constant bias. In the absence of any mutational bias, on the other
hand, the ratio term a(u, v, j)/(1—a(u, v, j+1)) in the finite product of equation
2.4 simplifies to 1 for all alleles and thus makes the effects of proportionality
pronounced. Any increase from 0 in the proportional-rate parameter s shifts
the probability mass away from being uniformly distributed among all alleles
toward shorter alleles reflecting their increased mean holding times relative to
longer alleles. Similarly, under linear bias, the effects of proportionality are
pronounced as this finite product has terms both > 1 and < 1 for longer alleles.

The truncated TPM of DiRienzo et al. fits the pure AC-repeat data by
essentially mimicking the truncated version of Ohta and Kimura’s SMM. The
two-phase models generally mimick their one-phase cousins in order to minimize

variances in marginal distributions of chimp and human repeats. Even the sligh-
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est deviation from one-phase increases these variances. Our inability to reject
one-phase in favor of two-phase using human-chimp data is in contrast with ex-
perimental observations of multi-step mutations. There are several explanations
for this. First, noise in repeat length estimates due to indel activity in the flank-
ing region may be at least partly responsible for elevating the experimentally
observed proportion of multi-step mutations. Empirical studies usually keep
track of the length of a microsatellite repeat along with its flanking sequence
(PCR fragment length), rather than the actual repeat length. Studies have
found both inter-specific and intra-specific fragment length polymorphism to be
caused by indels in the flanking regions [2] [21]. Thus, on a cautionary note,
indels in the flanking sequence could be construed as multi-unit microsatellite
mutations if repeat lengths are directly extrapolated from the PCR fragment
length.

Second, in the interest of not introducing any new models, except hybrids of
existing ones, we forged our two-phase models in the image of TPM and a well-
identified simplification of it in the spirit of Fu and Chakraborty. However, other
formulations of a two-phase mutational mechanism, particularly, those which
allow the probability p of single-step mutations and/or the success probability
m of the conditional geometric distribution specifying the lengths of multi-step
jumps to decrease with repeat length, may be more realistic, especially in light of
empirical evidence for large contractions being more common among long alleles
in yeast [35] and fruit fly [16]. For instance, the proportional-rate, linear-biased,
two-phase model (PL2) corresponding to a linear-biased, truncated version of
Fu and Chakraborty’s SMM, can be modified further to incarnate a varying
two-phase model whose geometric parameter m is further allowed to decrease

with repeat length. As more of the chimp genome gets sequenced such varying
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two-phase models should be tested to further evaluate the importance of multi-
step mutations. In this light, our rejection of two-phase should really be seen
as the rejection of a homogeneous two-phase mechanism that is insensitive to
repeat length in favor of a homogeneous one-phase mechanism.

Calabrese et al. [5] found significant motif-specific differences in equilibrium
distributions obtained from human genomic data of pure dinucleotides repeats.
We find such differences using human-chimp data. Motif-specific differences
in efficiency of the mismatch repair system are manifested through the differ-
ences in MLEs of various model parameters for AC versus AT or AG-repeats
(AT\G). The larger focal allele, along with the weaker downward bias for longer
alleles, of pure AT\G-repeats compared to those of pure AC-repeats suggests
that the mismatch-repair machinery is more efficient at repairing primary slip-
page mutations at longer AC-repeats. Interestingly, AC-repeats are also the
most abundant of all dinucoletide repeats in humans and chimps. The absence
of any significant differences in the slippage rates (proportional-rate parame-
ters) between AC and AT\G-repeats suggests that the slippage machinery is
not sensitive to the motif type.

On the other hand the slippage machinery is sensitive to point mutations as
evidenced by a two-fold decrease in the slippage rate of an AC-repeat interrupted
by just one point mutation relative to a pure repeat. This is not surprising as a
point mutation is expected to create fewer opportunities for polymerase slippage
and thereby decreases mutation rate as demonstrated in yeast [26]. There are
differences in the mutational mechanisms of pure and interrupted repeats. First,
the focal allele estimate of interrupted repeats is 3 units longer than that of
pure repeats. Second, there is about a two-fold decrease in the mutation rate

for longer interrupted repeats relative to the pure ones. This suggest that
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longer repeats, which are more prone to getting hit by point mutations, upon
interruption, are less likely to mutate and thereby contract, due to linear bias
toward the focal allele, as much as the pure repeats.

There is evidence in the human-chimp data as well as in human genomic data
to reject lineage homogeneity in favor of lineage-specific variation in the muta-
tional mechanisms of AC-repeats. There is an increase in the focal allele length
along the human lineage relative to that along the chimp lineage. One possible
explanation is that the human mismatch-repair system is not as efficient as that
of the chimp. As has been pointed out by Harr et al. [16], subtle differences in
the mismatch-repair system between two species could easily give rise to distinct
mutational biases. The human AC-repeats also show a relative decrease in the
mutation rate for longer alleles. This is compatible with a reduction in N, X s,
the product of the effective population size and the selection coefficient against
longer alleles in humans. Additional data are required to distinguish lineage
specific differences in mismatch-repair efficiency and selection.

Our mutation rate estimates are not significantly different from often ac-
cepted rate of 6 x 10~* for autosomal dinucleotide repeats in humans [11]. Em-
pirical overestimates of the true mutation rate may result from sampling bias
toward highly polymorphic loci which are typically also the fastest mutating.
If the loci chosen to estimate mutation rate empirically have longer alleles on
average, then an overestimation of the true average may result. The sample in
our study is small for reliable mutation rate estimates as reflected in the large

confidence interval of [1.3 x 107°,1.8 x 1074].



Chapter 6

FUTURE DIRECTIONS

These methods can be extended to more species as more primate sequences
become available. One can test hypotheses and estimate parameters in a locus-
specific as well as lineage-specific manner simultaneously. In particular, as data
for primates accrue, it would be biologically relevant to test more general func-
tional forms to model mutational bias as well as the nature of two-phase mu-
tations. One may further use such species-specific and motif-specific parameter
estimates in various population genetic inferences. The impact of model mis-

specification on signals of selective sweeps needs to be investigated.
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Appendix A

Rectifying Nonidentifiability

The truncated TPM is nonidentifiable. When p=1, m is nonidentifiable and
when m=1, p is nonidentifiable. In other words, when m=1, any value of p
will produce the same probability distribution of the data, for all data, and
vice versa [38]. Nonidentifiability guarantees inconsistency of MLE or any
other estimator [33]. We propose the following single-valued transformation
T (p, m)=(p*, m*), taking ordered pairs (p, m) in the square [0, 1] x [0, 1] to or-
dered pairs (p*, m*) in the kite K¢, in order to rectify this. [27].
(p,m), pm<l—¢ orp=m
T(p,m) = q (p(™) + me,m), m > max{l — ¢, p} (A1)
(p,m(®F) +pe),  p>max{l —¢m}
where, m, := (m—+e—1)/¢, and p. := (p+€—1)/e. In our computations, we
fix € at 0.001. Thus, for all biological purposes, one may interpret p* as p and
m* as m. We set T7'(1,1) = (1,1), so that the inverse image, T~'(p*, m*) :

K001 — 10, 1] x [0, 1] becomes well defined.
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