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Abstract. In the current mass media landscape with a few corporate
owners and operating under the propaganda model of communication
aimed at manufacturing system-supportive consent, and the algorithmic
rent-seeking business models of most popular social media platforms,
we set out to ask whether Peoples still have power to take collective
real-world action that may be counter to prevailing media tendencies.
We study interactions in social media and the reports in mass media
during the Black Lives Matter (BLM) protests following the death of
George Floyd. We implement open-source pipelines to process the data
at scale and employ the self-exciting counting process known as Hawkes
process to address our main question: is there a causal relation between
interactions in social media and reports of street protests in mass me-
dia? Specifically, we use network models to identify such interactions in
Twitter, that supported the BLM movement, and compare the timing of
these interactions to those of news reports of street protests mentioning
George Floyd, via the Global Database of Events, Language, and Tone
(GDELT) Project. The comparison is made through a Bivariate Hawkes
process model for a formal hypothesis test of Granger-causality. We show
that interactions in social media that supported the BLM movement, at
the beginning of nationwide protests in the USA, caused the global mass
media reports of street protests in solidarity with the movement. We also
use more general Hawkes process models to understand the diffusion of
specific influential messages in social media. Our study suggests that
BLM activists have harnessed social media to mobilise street protests
across the planet despite the concentrated ownership of mass media and
the algorithmic rent-seeking business models of social media.
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ity · Hypothesis Test · Social · Mass Media Modelling.

∗Swedish Research Council project 2019-03351 & the Wallenberg AI, Autonomous
Systems & Software Program funded by Knut and Alice Wallenberg Foundation.



2 Lindström, Lindgren & Sainudiin

1 Introduction

Although social media, at least in many nation states, can generally be used by
any individual or group to spread their messages on any topic, mass media own-
ership is highly concentrated in the hands of a few corporate actors in several
nation states under different governance models, including those of the USA [1]
and member states of the European Union [39]. On the other hand, both so-
cial and mass media are largely “harmonised” by the state in People’s Republic
of China [38]. It is well-established in “Manufacturing Consent: The Political
Economy of the Mass Media” [20] by Edward S. Herman and Noam Chomsky
that the mass communication media of the USA “are effective and powerful ide-
ological institutions that carry out a system-supportive propaganda function,
by reliance on market forces, internalised assumptions, and self-censorship, and
without overt coercion”, by means of the so-called propaganda model of commu-
nication, whereby “the manufacture of consent” refers to consent of the governed,
and derives from the phrase used in 1922 by Walter Lippmann [25].

Most popular social media platforms are owned by corporations and are
not bastions of individual free expressions. Their business models have been ar-
ticulated more generally as one of surveillance capitalism by Zuboff [43] and
specifically how social media disrupt our elections, our economy and our health
has been expounded by Aral [2], while Frenkel and Kang [14] focus on a spe-
cific social media platform, to mention a few recent studies. A recent theory of
algorithmic attention rents [31] in digital aggregator platforms, including social
media, explores how such platforms become increasingly capable of extracting
rents from a variety of actors in their ecosystems – users, suppliers, and advertis-
ers – through their algorithmic control over user attention, and how regulations
mandating the disclosure of their operating metrics and details on how user
attention is monetised are urgently needed.

Given the concentration of mass media ownership by a few corporate actors
in many states in the West and their propaganda model of communication that
routinely manufactures consent, and the relative freedom of individual commu-
nications of free expressions in social media which aims to monetise user atten-
tion, we set out to conduct a detailed statistical analysis through mathematical
modelling of interactions between Twitter, the social media platform, and mass
media, surrounding the #BlackLivesMatter movement during the summer of
2020 to ask the most basic question: Do people still have power to mobilise and
take collective real-world actions?. In short, we find in this study that the answer
to this question, albeit limited to a specific formulation, is a definite yes.

1.1 BLM-movement

On 25th of May 2020, George Floyd, a 46 year old African-American man, is
arrested in Minneapolis, Minnesota for allegedly using a counterfeit $20 bill to
buy cigarettes. The arrest is caught on film by passersby, showing how police
officer Derek Chauvin pins the handcuffed Floyd to the ground with his knee on
Floyd’s neck, while his three colleagues prevent anyone from intervening. Floyd
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repeatedly utters the words “I can’t breathe” before he goes unconscious. He
later dies at the hospital, and the video of the arrest goes viral on Facebook [10].
The next day protests in support of the Black Lives Matter (BLM) movement,
and against police brutality, start in Minneapolis, which during the following
days will spread both nationally and internationally to over 60 countries, and
become what may be the largest protests in U.S. history to date, with polls
estimating attendances in the range of 15-26 million people [8].

BLM is a decentralised grassroots movement that began on social media,
using the hashtag #BlackLivesMatter in the wake of the shooting of Trayvon
Martin in July 2013. The movement has since then gained attention for demon-
strations following the deaths of Michael Brown and Eric Garner in 2014, and
George Floyd in 2020, with its main issues being that of advocating against
police brutality toward African-Americans, and policy issues related to racial
injustices [21].

As reactions and critiques of the BLM movement, the phrase “All lives mat-
ter” was coined, as well as the phrase “Blue lives matter”, after the shooting of
two police officers during protests in Ferguson, Missouri in 2015. Both of these
slogans are associated with conservative views, and rejects the BLM-movement’s
idea of a need to focus on the racial injustice towards African Americans.

The decentralised nature of all three of these movements, and the way social
media has played a key part in their development, leading to real life events
such as mass protests, motivates our choice to analyse data from social media
and from mass media to try to get a better understanding of the mobilisation in
social media into real-world action.

1.2 Outline

In this work we study the landscape in mass and social media during the first
month of protests that followed after the murder of George Floyd. Our primary
question is whether there is a statistically significant causal interaction between
communications in socially networked communities and street protests as mea-
sured by published reports in mass media. We attempt to answer this question
by devising a data processing framework to mathematically model the interac-
tions between social and mass media via the family of point processes known as
Hawkes processes and conduct statistical hypothesis tests of Granger causality,
subsequent to identifying influential social media communities, often engaged
in ideological competition, using network models. Furthermore, we focus on the
social media diffusion process towards understanding how and when information
is spread influentially as cascades into the socially networked communities.

Briefly, this Chapter’s outline is as follows. We describe Models in Section 2,
Data Handling in Section 3, Analysis of Twitter Data in Section 4, Joint Media
Modelling in Section 5, Modelling Retweet Cascades in Section 6, and conclude
in Section 7.
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1.3 Extending DATA2023 Conference Paper

This Chapter is a significant extension of a conference paper by the same authors
[24]. Section 6 is entirely new while Section 2 has been expanded to include more
general models and make the mathematical exposition more self-contained. The
other Sections are largely excerpted from the conference paper except Section
5 with additional details on stabilising nonlinear optimisation. Section 1 here
frames a much broader context and Section 7 is also appropriately extended.

2 Models

2.1 Hawkes Processes

We will now introduce a family of point processes known as Hawkes processes,
assuming the reader is familiar with point processes. These processes were in-
troduced by Hawkes [19], and due to their self-exciting nature they are used in
fields such as epidemiology, seismology, and finance [9, 5]. Moreover, it has been
implemented in analysis of diffusion processes in social media [28, 41].

Suppose we observe events in continuous time, i.e., points on the positive
real line as timestamps, where for each i, ti is the exact time where some sort of
event occurs for the i-th time. Define the history of a point process up to time
t, as the set Ht containing all timestamps {ti} up to time t. A Hawkes process
allows us to model the occurrence of future events after time t based on the
entire history Ht up to time t as follows:

Definition 1. Let N(t) be a point process that counts the number of events up
to time t with history Ht. If the intensity λ(t) of N(t) is of the form

λ(t) = µ+
∑

ti∈Ht

ϕ(t− ti) , (1)

we define N(t) as a Hawkes process, where µ is the baseline intensity and ϕ(t)
is the kernel (Eq. (1) in [24]).

The events (i.e., points on the positive real line) of a Hawkes process, can be
interpreted as being of two types. First we have the immigrants which arrive at
a constant rate of the baseline intensity µ. Next, we have the offspring which
are produced by existing events. These arrive after time t via the intensity of
the kernel ϕ, from any historical event ti ∈ Ht, which is often chosen to be
monotonically decreasing, and is thus a descendant of an already existing event in
history. Note that all events in history, whether they are immigrants or offspring,
may produce new offspring.

As the arrival of an event increases the rate of new events arriving close
in time, intuitively we can talk about Hawkes processes having a self-exciting
nature; events will naturally cluster around immigrant events. For a concrete
example, one can think of the immigrant events as an earthquake occurring,
with the offspring being after-shocks.

For a Hawkes process to be stationary, we require some constraints on the
kernel.
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Definition 2. Let ϕ(t) be a kernel for a Hawkes process N . We define

ν =

∫ ∞

0

ϕ(t)dt , (2)

as the branching factor of the Hawkes process.

The branching factor tells us, the mean number of offspring events one event
can have. If ν < 1, the process is in the subcritical region, and the branching
from one event will die out. If ν > 1, it is in the supercritical region and will
explode exponentially. Moreover, if ν < 1 then inductively we get the estimate,
via the geometric sum, that an event will generate 1/(1 − ν) offspring in total
on average.

One instructive example of how to interpret the branching factor comes from
Filimonov and Sornette [13], where they examine trading by looking at financial
data. Their estimation of the branching factor ν ∈ (0.7, 0.8), means that 70%-
80% of all the trades in the given data are due to past trades, rather than external
events happening.

Theorem 1. A Hawkes process is stationary if and only if its branching factor
satisfies ν < 1.

We will now introduce a particular choice of kernel.

Definition 3. We define

ϕ(t) = αβe−βt , (3)

as an exponential kernel where parameter α ≥ 0 is the self-excitation parameter,
and parameter β > 0 is the decay rate (Eq. (2) in [24]).

Parameter α thus decides how much an occurred event will influence the rate of
new events, while β will decide how long into the future this influence will last
as ϕ(t) → 0, when t → ∞.

Marked Hawkes Point Processes We now introduce an extension of Hawkes
processes, where each timestamp of an event not only contains the event’s loca-
tion in time, but also some information about that specific event. These types
of point processes are known as marked point processes. Each mark or type is
represented by an i ∈ {1, 2, . . . , d}, the set of possible marks that is seen to
represent one of d dimensions.

Definition 4. Let N∗ be a point process on R+. We define N∗ as the ground
process. Let the mark space K be a set of marks. We then define the point process
{ti, κi} on R+×K as a marked point process, if N∗ is a well-defined point process,
i.e., for bounded A ∈ R+, Ng(A) = N(A×K) < ∞.

An example of a marked point process would be a model where we in one di-
mension have the timestamps of earthquakes occurring, and in the mark space
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we have the information of the magnitude of each earthquake. The size of mag-
nitude could then influence the intensity of new earthquakes occurring in time.
Other than the exponential kernel, We experimented with several other ker-
nels,including the In Section 6, we will use a marked Hawkes process with a
power-law kernel defined as bellow.

Definition 5. Let N be marked point process with history Ht,m with elements
on the form (ti,mi) ∈ R+ × N. If the intensity of N is of the form:

λ(t) =
∑

(ti,mi)∈Ht,m

ϕmi
(t− ti)

=
∑

(ti,mi)∈Ht,m

κmβ
i (t− ti + c)−(1+θ) , (4)

where, κ, β, θ, c > 0, then N is a marked Hawkes process with a mark-proportioned
power-law kernel.

Analogous to the exponential kernel, 1 + θ captures how quickly an event is
forgotten, while parameter c shifts the term so that ϕmi

(t) is bounded when
t ≈ 0. Parameters κ and β determine how much an event influences the intensity
of future events. Note that that this influence is affected by the mark mi ∈ N,
i.e., the larger mi is, the larger the influence of that event will be.

Multivariate Hawkes Processes Next, we introduce a natural extension of
Hawkes processes, where each timestamp of an event not only contains the
event’s location in time, but also some information about that specific event.
Such point processes are known as marked point processes. Each mark or type is
represented by a dimension i ∈ {1, 2, . . . , d}, the set of possible marks It is nat-
ural to model Hawkes processes in multiple dimensions, where each dimension
is a Hawkes process for each or types of events, that are possibly interconnected
in terms of their influence or lack thereof on each other’s occurrence. A nat-
ural extension of the Hawkes process is the multivariate Hawkes process. To
continue with the example of earthquakes, let the first dimension in our multi-
variate Hawkes process count the number of earthquakes in a region, and the
second dimension count the number of tsunamis in the same region. The arrival
of an earthquake might then give rise to a tsunami, which a multivariate Hawkes
process, given the right parameters, can capture.

Definition 6. We define a marked point process N with mark space {1, . . . , d}
as multivariate point process. Moreover, for i ∈ {1, . . . , d} we denote the i:th
component of the multivariate point process N as Ni, where N = (N1, . . . , Nd)
is a marked point process, and Ni is a well-defined ground process. We refer to
d as the dimension of N .

Definition 7. Let d ∈ N be the number of dimensions, and Ht,i for i = 1, . . . , d
be the history of events in dimension i. The multivariate point-process induced
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by the intensities

λi(t) = µi +

d∑
j=1

∑
tk∈Ht,j

ϕij(t− tk) i = 1, ..., d (5)

is then defined as a multivariate Hawkes process (Eq. (3) in [24]).

Definition 8. Let d ∈ N be the number of dimensions. We If the kernel ϕij(t)
takes the form of the following multivariate exponential kernel,

ϕij(t) = αijβije
−βijt i, j = 1, ..., d , (6)

where αij ≥ 0 is the excitation parameter, and βij > 0 is the decay rate, then we
have the multivariate Hawkes process with exponential kernel (Eq. (4) in [24]).

The excitation parameter αij can be interpreted similarly as α in the one-
dimensional case with the exponential kernel, with the exception that this in-
fluence on new events in dimension i now may come from previous events in
any dimension j ∈ {1, . . . , d}. Analogously, βij is interpreted as the rate of de-
cay that specifies how past events in dimension j can influence the arrival of
new events in dimension i. In Section 5 we use a multivariate Hawkes process
to model Twitter events in dimension 1 and mass media reports of protests in
dimension 2.

2.2 Granger Causality

How to rigorously define causality has been a topic of discussion in western
philosophy for over 2000 years, starting with Plato and Aristotle [12], and con-
tinuing on with Hume and Kant’s disagreement being one of the fundamental
discussions in modern philosophy. The problem is still open, [32].

In light of this, and in some sense to get around the metaphysical compli-
cations of proper causality, Clive Granger introduced the concept of Granger
Causality relating to stochastic processes. The basic idea is if a variable Xt

Granger-causes variable Yt, then the past values of Xt contain information that
helps predict future values of Yt+1 better than doing prediction based only on
past values of Yt [18].

Using the following Theorem from Eichler [11], we will test the null hypothesis
of the non-existence of Granger causality between events in social and mass
media, and vice versa, in the sequel.

Theorem 2. Let N(t) be a multivariate Hawkes process in d dimensions, with
kernels ϕij(t), i, j ∈ {1, . . . , d}. Then the j-th component Nj does not Granger-
cause the i-th component Ni if and only if ϕij = 0, ∀t ∈ R.

Thus, when N(t) is a multivariate Hawkes process with exponential kernel, by
Theorem 2 the j-th component Nj does not Granger-cause the i-th component
Ni if and only if αij = 0, ∀t ∈ R.

When examining Granger causality on more than two dimensions, it is nat-
ural to look at the following induced graph.
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Definition 9. Let N be a multivariate Hawkes process in d dimensions. We
define the Granger causality graph Gc with vertices V = {1, . . . , d}, directed
edges (u, v) ∈ E from u to v, and the following constraint

(i, j) /∈ E ⇔ ϕji(t) = 0, ∀t, and i, j ∈ V . (7)

Via the Granger causality graph, one can naturally talk about indirect Granger
causality; assume that there is no edge from vertices i to j, i.e., the i:th com-
ponent does not Granger-cause the j:th component. The i:th component may
however affect the j:th indirectly, if there exists a path from i to j in the Granger
causality graph.

3 Data Handling

3.1 Apache SPARK

The data was handled using Apache Spark4 which is an open-source engine
designed for data engineering, data science, and machine learning on clusters of
multiple computers, by implicit data parallelism. Spark is multi-language and
supports Scala, Python, R, SQL, Java, C# and F#. While most of
the code for this article was written in Scala, the ease of switching between
languages in the same environment proved quite useful, as we would use libraries
written in both R and Python .

On top of Spark core, Spark SQL [4], which introduces the data abstraction
of DataFrames, allows manipulation in Scala, Python, and R using the stan-
dard SQL language, and the graph-processing framework GraphX [17], allows for
network-analysis. To run Spark, the cloud data platform Databricks was used,
which provided cloud storage, computing clusters, and a notebook-environment
to write and run the code after loading the two main libraries developed for this
study, MEP5 and SPARK-GDELT6.

3.2 Twitter

Twitter is a micro-blog and social media service, founded in 2006, where users
post and interact via tweets – a short message restricted to 280 characters,
which may also contain pictures, short videos and URLs. Tweets can be original
posts, replies to other tweets, or retweets, i.e., sharing of another user’s tweet.
As long as a user does not actively chose to be private, anyone is able to read the
tweets of the user. To help a tweet gain attraction, and make it easier for other
users to find tweets on a specific topic, the user can tag their posts by including
keywords prefaced with ‘#’, the hash symbol. These tagged keywords are called
hashtags and they have been used by activists in global social movements such

4https://github.com/apache/spark
5https://github.com/lamastex/mep
6https://github.com/lamastex/spark-gdelt
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as #BlackLivesMatter and #MeToo to raise awareness of injustice and counter
prevailing narratives [21].

Users may also follow other users on Twitter. The relationship of following
is asymmetrical, meaning that if user A follows user B, user B does not have to
follow user A. Compare this to Facebook, where users mutually have to accept
each other as friends to be able to interact. To simplify things, if Facebook
is about keeping in touch and networking with your friends, Twitter is about
sharing and receiving information the user finds interesting; according to a study
done in 2014, 44% of Twitter’s users have never tweeted which seems to suggest
that a large part of the user base only uses Twitter for receiving information [29].
As of the fourth quarter of 2020, Twitter has 192 million daily users [40]. Due to
this asymmetrical following relationship, which encourages a more open discourse
between users, along with its magnitude of users, choosing Twitter as the social
media to analyse becomes the natural choice. Furthermore, unlike Twitter, other
prominent social media platforms including Facebook and Instagram do not
allow researchers open access to their data. We developed MEP to be able to
design experiments, collect and analyse data from different Twitter APIs at
scale in public cloud infrastructure.

Application Programming Interface To work with and be able to analyse
Twitter data efficiently on an arbitrarily large scale, access to Twitter’s Appli-
cation Programming Interface (API) is needed, and requires Twitter developer
credentials, which anyone can apply for. With access to the credentials, one may
request and download tweets which can be represented as JSON-files. At the
time of writing, two versions of the Twitter API exists. This work was done in
the older version 1.

To get a sense of how the data was handled, a brief overview of the relevant
fields from the schema of the JSON for a tweet will be presented. For full details,
we refer to Twitter’s data dictionary7 8. The two most basic objects for a tweet
are the User object and the Tweet object shown in Tables 1 and 2, respectively.

From the User object, as the name suggests, we get access to the metadata
of a user. However, note that no direct information about which users follow the
user, or which users the user follows, beyond the counts, is accessible from the
user object.

From the Tweet object, we get access to the metadata of a tweet. Via the
field “user”, we also get the information of the user behind the tweet, since this is
a User object. Moreover, since the fields “quoted status” and “retweeted status”
are Tweet objects, we get the full information of the original post that has been
retweeted or quoted.

Note that the Tweet Object in “retweeted status” points to the original tweet
that has been retweeted, if the post is a retweet. It is possible for a user to

7https://developer.twitter.com/en/docs/twitter-api/v1/data-dictionary/

object-model/tweet
8https://developer.twitter.com/en/docs/twitter-api/v1/data-dictionary/

object-model/user
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Table 1. Some attributes, with their types and description, for the User object (Table
1 of [24]).

User object
Attribute Type Description

id Int64 The unique integer

representation of the user.

screen String The screen name, also

name known as handle of the user.

followers Int The number of followers

count the user has.

friends Int The number of users

count the user follows.

Table 2. Some attributes, with their types and description, for the Tweet object (Table
2 of [24]).

Tweet object
Attribute Type Description

created at String UTC-time when the tweet was created.

id Int64 The unique integer representation of the tweet.

text String The textual content of the tweet.

in reply to status id Int64 If the tweet is a reply to another tweet, the field will
contain the tweet-ID of that tweet. Otherwise null.

in reply to user id Int64 If the tweet is a reply to another tweet, the field will
contain the user-ID of that tweet. Otherwise null.

user User Object All information of the user of the tweet.

quoted status Tweet Object If the tweet is a quote tweet, all information
of the original tweet will be contained in this field. Otherwise null

retweeted status Tweet Object If the tweet is a retweet, all information
of the original tweet will be contained in this field. Otherwise null
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retweet another user’s retweet, but information on this chain of events is thus
not accessible. For example, let user A write a tweet T that gets retweeted by
user B. Later, user C sees this retweet on user B’s timeline and then retweets
T . Twitter’s API will then only tell us that user B and C have retweeted user
A, but not the fact that user C accessed this tweet via user B. This limitation
also motivates the use of retweet network in Section 4.2.

Along with these two objects, there is another object named entities, which
contains all the metadata of a tweet’s content, including any URLs, hashtags,
twitter handles of users mentioned, and media content (pictures and short video
clips).

Fig. 1. An overview of Twitter’s API. Source is simply which device (e.g., smartphone,
and desktop) a user used to post the tweet. Note that included media in tweets are
represented as links in this overview.

Data Set The data set that was used [15] has 41.8 million collected tweets
from 10.1 million unique users regarding the Black Lives Matter movement,
along with the smaller counter movements of Blue Lives Matter (pro-police
movement) and All Lives Matter. These tweets were collected by filtering on
the keywords: BlackLivesMatter, BlueLivesMatter and AllLivesMatter. The data
contains tweets from the beginning of the movement in 2013 to 30 June 2020. In
this work, we focus on the events occurring during the aftermath of the death
of George Floyd on 25 May 2020, and discard all tweets before this date.

Collecting Data Due to Twitter’s policy, collecting and sharing tweets publicly
is not allowed. To share a set of tweets, instead one shares the IDs of each tweet,
and to get the full metadata of the tweets, access to Twitter’s API is needed.
There is also a limit on how many tweets one may collect per hour, which initially
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was a problem. To get around this, the python library twarc9 was used. twarc
allowed us to collect tweets from the IDs (a process known as hydrating), in an
optimised way with respect to the hourly collection limit.

To be able to work with the data in Databricks and Spark, a Docker-container
with python and twarc was set up on a remote machine, that ran the hydra-
tion script on small batches of the IDs, collected them as ‘.json’-files, and then
compressed and stored them in our Databricks cloud storage. This procedure
took roughly five days.

A consequence of retroactively collecting tweets from their IDs is that all
tweets that have been removed due to various reasons (such as the users of these
tweets getting banned, removing their accounts, or going private) at the time of
hydrating, are not accessible and were therefore not collected.

After hydrating the IDs from the data set, and discarding tweets posted
earlier than 24 May 2020, 23.3 million tweets from 7.1 million unique users were
left. These were cleaned to be easier to work with using Spark’s Dataframes. We
also categorised each tweet as an original tweet, retweet, quoted tweet, etc., and
then stored them in the column-based data-storage format parquet on a delta
lake [3]. See MEP for details of the collector, pre-processor and categoriser behind
the delta lake.

3.3 GDELT

The Global Database of Events, Language, and Tone (GDELT) project, founded
in 2013, is an open database supported by Google Jigsaw, that monitors news
media in print, broadcast, and web formats from all over the world in over
100 languages. It is updated every fifteen minutes and stretches back to the
1st January of 1979, containing meta-data such as the people and organisations
being mentioned, events and their locations, counts of key-words along with the
tone and emotions of the parsed news sources10. We used the GDELT database
to get a high level understanding of the mass media landscape during the given
time span, by reducing the records of reported events of protests, to data points
in time. We accomplish this by building an analytics-ready Delta Lake [3]. A
brief overview of GDELT to appreciate how we handled the data for this work
follows. For a more thorough overview, we refer to the documentation 11 and
SPARK-GDELT , our open-source library developed for this study.

Coding The idea behind GDELT is that of coding, which is fundamentally
fairly simple. Given a record – for example a written news article – go through
the text and identify the real world events that are being reported in the record,
and identify the actors who are involved in the event. During the Cold war, two
coding frameworks dominated: WEIS and the Conflict and Peace Data Bank,

9https://twarc-project.readthedocs.io/en/latest/
10https://www.gdeltproject.org/
11http://data.gdeltproject.org/documentation/GDELT-Global_Knowledge_

Graph_Codebook-V2.1.pdf
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COPDAB. Both of these frameworks, being developed and used in a 20th cen-
tury post-World War II context, were focused on codifying how sovereign states
(the actors) interacted through official diplomacy and military threats [37]. For
example, in the following sentence:

“President Reagan has threatened further action against the Soviet Union
in an international television program beamed by satellite to more than 50 coun-
tries”,
one would identify the act of threatening as the event, and assign it some integer
(decided by the code framework), with the actors being President Reagan (or
the United States if the coder is only interested in sovereign states), and the
Soviet Union.

This process of coding would historically be done by hand. However, the
combination of psychological studies showing that the kind of sustained decision-
making involved in coding leads to fatigue, inattention, and heuristic shortcuts,
and the technological advancement in computing software and hardware, cod-
ing is nowadays automated. The frameworks for codifying has also developed
since the cold war, with GDELT using the framework of Conflict and Mediation
Event Observations (CAMEO) [23]. Some notable changes being that actors are
no longer limited to sovereign states, and include persons, organisations, and
companies.

In practice, GDELT is essentially two separate but interlinked databases:
The Global Knowledge Graph (GKG), which consists of records and the Event
Database, which as the name suggests stores events that are being reported.

GKG The Global Knowledge Graph (GKG) consists of all records from multiple
news sources in the world. As of version 2 of GDELT, new records get added
every fifteen minutes. Whenever a record is added, the source text is parsed
via natural language processing to identify the events (using coding), locations,
persons and organisations, as well as themes mentioned in the text. Moreover,
keywords such as “protest” that are mentioned multiple times gets counted.
Sentiment analysis is also incorporated to get a value of the tone of the source
text (whether the text is positive, neutral or negative). Many other metadata
extracts are in each GKG record.

Event Database The Event database attempts to record all unique events that
are being identified in the parsing process of the GKG database. Each data point
is given a unique ID for the event, and contains the date, the actors along with
the code of the type of event being identified. The coded event also gets mapped
to the Goldstein-scale [16], which seeks to measure the potential impact the
event could have on the stability of the country. Moreover, the Event database
has metadata on how often the event has been mentioned by records in GKG
and the average tone of these records.

Handling of the GDELT Data Due to the sheer magnitude of data contained
in the GDELT database, working with data proved quite a challenge. Our goal
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was to filter out the events about the protests relating to the Black Lives Matter
movement and the counter movements between 25 May 2020 and 30 June 2020.
Although the parsing of news records into the GKG database identifies organi-
sations, it did not identify the Black Lives Matter movement as one, probably
due to its lack of centralisation.

What we did instead was to filter out all data relating to protests happening
in the world. This naturally led to noisy data, since we got reports of protest
unrelated to the BLM movement, but we justify this by the fact that no other
major protests were happening in the world at the same time. To check this,
we filtered the Event database by events with CAMEO root-code 14, i.e., those
events coded as protests, over a three months timeline.

Fig. 2. Events coded as protests in the GDELT Event database (Fig. 1 of [24]).

As we see in Figure 2, there is a baseline of roughly 5,000 events per day coded
as protests before 25 May. This number then explodes, and there is nothing that
suggests that the sudden increase in magnitude of protests are not related to the
BLM protests. It is worth pointing out that there is no bijection between the
real world protest and the protest data from the Event database. For example,
if in one city during one day, large protests are taking place and one group of
people are protesting peacefully while another group is rioting, then the coding
framework should identify the act of the peaceful and rioting protesters as two
different events [37], although they are near each other in time and space. Thus,
saying that more than 8,000 protests happened on the 1 June 2020, would be
incorrect.

In Section 5 we will look at news reports in mass media, and therefore use data
from the GKG database. We did this by filtering by the themes of the records.
All records in the GKG database with theme “PROTEST” were filtered out.
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Fig. 3. Comparison of records from the GKG database with theme “PROTEST”, and
events coded as protests from the Event database (Fig. 2 of [24]).

Ignoring the periodic dips in the GKG plot in Figure 3 (which are due to
less reporting being done on weekends), the two plots follow a similar pattern.
Naturally, there are more records than events, since multiple news sources may
report the same event.

4 Analysis of Twitter Data

In this Section, we explore the Twitter data, first via simple querying on the
data set, and then by doing network analysis on the induced retweet network.
The results from this exploratory data analysis then motivated the choice of
using Hawkes processes to model and perform hypothesis tests to shed light on
the phenomena of interest in this study – occurrence of tweets in support of the
BLM movement and that of mass media reports of street protests.

4.1 Data Observations

Timeline We started by examining the data over the relevant time-span from
24 May 2020 to 30 June 2020. During this period, 23,346,745 tweets by 7,111,140
unique users were collected using twarc on the BLM data set [15].

From Figures 4 and 5, we can see that activity first starts on Twitter, and
the reports of protests start to drastically increase on 27 May. We also see a
dip in Twitter activity between 31 May and 2 June, while the GDELT data on
the number of reports of protests spikes during these days. The explanation of
this is simply that the data set lacks tweets on these days. This was found while
exploring the data, and noticing that the data set contained retweets of a tweet
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Fig. 4. Number of tweets per day (Fig. 3 of [24]).

Fig. 5. Log-scaled plot of the number of tweets, records and events (Fig. 4 of [24])
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from this time period, but not the original tweet. Whether these missing tweets
disappeared during the collecting of data, or if they are missing in the original
data set [15] of the Tweet IDs, remains unclear. To deal with this, we refrained
from doing any modelling with tweets from this time period.

Type & Media Content of Tweets Next, we examined TweetTypes, i.e.,
the types of status update or interactions in our Twitter data. The most to least
frequent TweetTypes (% of data) were Retweets (55%), Retweets of Quoted
Tweets (27%), Original Tweets (7%), Quoted Tweets (7%), Reply Tweets (3%),
Original Tweets (1%). Thus, only 18% of the tweets in the BLM-data set were
original tweets (either original, or replies to other tweets), with the remaining
82% being some sort of retweeted content. This suggests that the re-sharing of
other users’ original content is fundamental for how users interact with each
other on Twitter, and motivated our choice of examining the retweet network.

One initial idea was to focus on URLs to news articles shared by Twitter
users, and then link them to the GDELT database. However, we soon discovered
that users in general did not share news sources from mass media. Instead highly
retweeted tweets often contained original media (i.e., videos and pictures), which
were often taken from the protests. For instance, 53% of tweets with over 1000
retweets, as opposed to only 17% of all tweets, shared original media.

4.2 Network Analysis

Section 4.1 showed the importance of retweets in the Twitterverse. In this Section
we will formalise this by introducing a retweet network structure on our data
set.

Retweet Network

Definition 10. Let GI = (V,E) be a directed weighted graph in time interval
I ⊂ R+, where every vertex v ∈ V is a unique Twitter user, and every edge
e ⊂ {(u, v) | (u, v) ∈ E ⊂ V 2} is interpreted as user v having retweeted u during
time interval I. The weight W (e) = W ((u, v)) ∈ N is the number of times user
v has retweeted user u. We then define GI as a retweet network.

Furthermore, we define G′
I as an undirected retweet network if (u, v) ∈ E ⇔

(v, u) ∈ E. Thus G′
I ignores whether u retweeted v or vice versa but preserves

the information that there is a retweet relation between the two users.

We chose to look at retweets since a retweet by user u of an original tweet by
user v is highly likely to mean that user u agrees with user v. Direct retweets are
generally recognized to indicate trust in the communicator and endorsement [22,
27, 7]. The number of times a user has been retweeted also gives a probabilistic
interpretation, using the random geometric graph interpretation in [35], that
measures how influential a user is on another in terms of the lengths of their
most retweeted paths.
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Table 3. Ten most retweeted users, sorted by number of retweets. Usernames for non-
public users have been anonymized. The communities were identifed using the label
propagation algorithm (Table 3 of [24]).

Username | followers | | retweets | Community

@JoshuaPotash 142,833 759,572 Pro-BLM
@YourAnonCentral 5,862,927 529,431 Pro-BLM

- 1,584 187,065 Pro-BLM
@elijahdaniel 760,935 161,337 Pro-BLM

- 22,983 135,698 Pro-BLM
@MrAndyNgo 799,291 125,898 Anti-BLM

- 1,232 125,826 Pro-BLM
@BTS twt 34,107,446 125,534 K-pop

@shawnwasabi 140,788 106,731 Pro-BLM
@Drebae 141,613 103,594 Pro-BLM

By looking at our retweet network we can already get some information from
the Twitter data set; simply by summing the outgoing edges and their weights
for every user, we get the most retweeted users in our time interval between 24
May 2020 and 31 June 2020.

By just looking at the ten most retweeted users, there are a few points of
interest worth mentioning. The first being that the third and the seventh most
retweeted users both have fewer than 1600 followers. This naturally raises the
question of exactly how these users got the exposure they did. By looking at
the diffusion process of these users’ tweets in Section 6, will we be able to draw
any conclusions on how information can be spread in the Black Lives Matter
movement?

One noteworthy user is the sixth most retweeted user @MrAndyNgo. Andy
Ngo is an American conservative journalist and a prominent opponent of the
Black Lives Matter movement, who in February 2021 published Unmasked: In-
side Antifa’s Radical Plan to Destroy Democracy [30], where he among other
things writes about his experiences from the BLM protests of 2020. His presence
amongst the most retweeted users will serve as a gateway into the counter-
movements of All Lives Matter and Blue Lives Matter. Thus, we need to detect
different communities within the observed retweet network, such that each com-
munity has more edges or retweets within it when compared to the number of
edges between it and another community.

Connected Components The motivation behind the definition of an undi-
rected retweet network follows in the next step, when we look at the connected
components of our graph.

Definition 11. Let G be a graph. A sequence of edges (e1, ..., en−1) is called
path if it corresponds to a sequence of distinct vertices (v1, .., vn), such that ei =
(vi, vi+1). Two vertices u, v are connected if there exists a path between them,
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and if G is undirected, we call the sub-graph H of G a connected component if
and only if there exists a path between every pair of vertices in H which contains
a subset of the vertices in G.

The reasoning behind invoking the notion of connected components of the undi-
rected retweet network is to, on a high level, make sure that a meaningful dis-
course between users, in terms of being influenced by and influencing others,
exists within the connected component. In practice, we could have a very dis-
connected network with lots of unconnected components, which would mean that
most users only interact and retweet a few selected users. Another interesting
case would be if the network would have a few significantly large components;
this would suggest the existence of a set of discourses, where the users in their
respective component do not interact – perhaps because of political differences
reflected in large “echo chambers”. To find all connected components in the
retweet network, the GraphFrames framework in Spark was used. The result
showed that 6,083,687 i.e., 85.6% of the 7,111,140 users were in the same con-
nected component. The remaining users were scattered around in smaller con-
nected components, with the largest being 74 users. These users were therefore
discarded from further analysis.

Community Detection While the data set contains tweets using the hashtags
of the counter movements #AllLivesMatter and #BlueLivesMatter, in practice,
users associated with these movement did not necessarily use these hashtags,
but often used the hashtag #BlackLivesMatter either ironically or to get more
attention. Thus, just using simple querying on the hashtags in the data set,
did not suffice to get a sample of users from these movements. To get a better
sense of the relationship between users, we instead therefore used the community
detection algorithm known as Label propagation algorithm (LPA). LPA is a semi-
supervised machine learning algorithm, which seeks to assign labels to nodes in a
network, where each label maps to a specific community inside the network [33].
In Spark’s GraphX framework, the algorithm is implemented using Pregel API
[26], which allows for parallel computation when processing graphs. On a high
level, Pregel computations are a sequence of iterations, defined as supersteps,
where for every superstep, each vertex in the graph runs a user defined function.
This local vertex-centric approach where each vertex is processed independently
in parallel, in contrast to the more classical iterative graph algorithms where
each vertex is visited one by one, naturally induces distributed implementations
that can computationally scale to arbitrarily large networks. In distributed LPA,
implemented as a Pregel program,each vertex in the graph is initially assigned
its own distinct vertex label to represent its initial community label. At every
superstep, vertices send their community label to all out-neighbours and update
their label to be the mode community label of incoming messages from their
in-neighbours. Although the algorithm can have trivial or oscillating solutions
without guarantees on convergence, it works well in practice on real data as we
found by running LPA on the largest connected component with 10 supersteps
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and investigating at least the most influential set of users within each community
manually.

Exploring Ideological Diversity By looking at the twenty most retweeted
users, we see that eighteen of these fall into the same pro-BLM community, with
155,229 users. Andy Ngo is in a community with 26,624 users. This is interesting
when we remind ourselves from Table 3 that he is the sixth most retweeted
user, and if we assume that most of his retweets come from his relatively small
community, it suggests that he has a very loyal set of core followers. The questions
that arises then are if we can identify this core set of followers, and moreover if
we also can identify a similar core followings in the pro-BLM community. In the
same community where we find Andy Ngo, we also have prominent conservative
commentators such as Candance Owens, Glenn Beck, Steven Crowder, Paul
JosephWatson, Dave Rubin, and also Republican senator Ted Cruz, and Raheem
Kassam from the Reform UK-party (formerly known as The Brexit-Party), along
with others. It is worth mentioning that all of the twenty most retweeted users in
this community are users with largest followings (over 25,000 followers). Thus,
the phenomena of users with small followings reaching a larger audience does
not exist to the same extent in this community when compared to the pro-BLM
community.

The last of the twenty most retweeted users is the official account of the
South Korean pop (K-pop) group BTS, who has their own community. The
communities for the top ten most retweeted users are presented in Table 3 and
a sample of tweets from the pro-BLM and anti-BLM communities are presented
in Table 4.

Note how the textual content of the tweets from the two communities differ.
By going through the label propagation algorithm we seem to have identified
the two different political camps. Moreover, we note that usage of the hash-
tag #BlackLivesMatter is prominent in the anti-BLM community. Thus, we can
conclude that just filtering by the anti-BLM #AllLivesMatter and #BlueLives-
Matter would not have sufficed to identify these communities.

Thus, through the use of (1) retweet network, which encodes retweets, one of
the clearest signals of directional ideological concurrence of the retweeter with
the tweeter, (2) distributed label propagation on such a retweet network to detect
communities of users who are in ideological concurrence within each community,
and finally (3) listing the top K most retweeted tweets within each such commu-
nity, we have a simple yet effective mechanism to explore the ideological diversity
that is representative of the communities, independent of their sizes and activ-
ity levels, i.e., the number of users and intensity of interactions in Twitter. We
found this simple three-step process to be an effective approach to identifying
the pro/anti-BLM tweets before further analysis.

4.3 Summary

In this chapter we have examined how the users in the data set have interacted
by defining and looking at the retweet network. We noted that some of the users,
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Table 4. Sample tweets from the pro-BLM and anti-BLM communities (Table 4 of
[24]).

Pro-BLM community
i can’t stand by and continue to live in a world where the color of your skin is an automatic target on my family, friends,
and neighbors backs. tri-city we must come together to support our communities. THIS. IS. AMERICA. BE THE CHANGE
YOU WANT TO SEE. #blacklivesmatter https://t.co/XIDSNqgx6Q
Thread of people who took it upon themselves to trivialise the current situation going on and #BlackLivesMatter
#BlackLivesMatter Houston is hosting a protest march this FRIDAY at 2PM starting at Discovery Green demanding
justice for #GeorgeFloyd White allies, y’all gotta do better and this is a place to start. Everyone who’s able should be
there. https://t.co /EbWeBrZneP
Aiyana Jones a 7 YEAR OLD CHILD who was shot in the head by an officer, when the officer raided the wrong house.
A 7 year old girl didn’t deserve to be killed because of disgusting reckless officers. Acab and BLM, never forget this girls
name! #BlackLivesMatter https://t.co/HCWzabkFv4
So protest in Huntsville, TX was small, but that was no surprise. We’re a small town and most things just caught up to
the present on the outside...at the end of the protest on my way home, I saw something I never noticed. This is why we do
what we do. #BlackLivesMatter https://t.co/gTuCilB7mi

Anti-BLM community
Black people are 80 times more likely to kill white people in England/Wales than the reverse! And yet, #BlackLivesMatter
more than others? EXPLAIN... Check the stats: https://t.co/DmPDVVGbSo https://t.co/qxXmuNIh2X
#BlackLivesMatter should now be classified as an extreme political hate group.. Simple.. https://t.co/mFh56qCpo9
#DontTakeTheKnee #DontTakeTheKnee please get this trending Sick &amp; tired of the #ScumMedia telling us what
we should do! Well I say #DontTakeTheKnee #BLM is a terrorist organisation. Do your homework! #AllLivesMatter
#WhiteLivesMatter #ISTANDwithDominic Raab @SkyNews
Then someone gets stabbed and they want the police back after running them out of town. Ha you couldn’t make it up
#BlackLivesMatter #blm #thugs #brixton https://t.co/1uVXQ63UT2
Just saw a video of #BlackLivesMatter protest in #Reading - looks like 3 white people have been stabbed and in a bad
way! Now if this turns out to be a race attack, I’m going to blame the #Media. They’ve been stoking up tensions between
blacks and whites for weeks now!

despite their relatively small following, managed to become the most retweeted
users. This motivates the questions:

– What is the nature of the information diffusion process for retweets in the
data set in general? Does tweets from different movements spread in the
same way?

– In particular, how does the diffusion process look for a viral tweet when it
is initialized by a user with a small following?

We also implemented a community detection algorithm to find groups of users
who share similar values. This proved quite successful, by looking at the users,
and sampling the textual content of the tweets from these communities. The
fact that the sixth most retweeted user Andy Ngo belonged to a relatively small
community, raises the question:

– What role does a influential users play in the spread of a tweet? Can such
influential users be found for all viral tweets?

These are the main questions that motivates the choice of models in Section 6.

5 Joint Media Modeling

In this Section we examined the interplay between the Twitter and GDELT
data sets by looking at the Granger causality between them. For this we pro-
posed simple two-dimensional Hawkes processes with an exponential kernel. The
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timeline for this joint modeling was three days after the death of George Floyd
over the 24-hours-long period between midnight of 28 May and midnight of 29
May, which is when the protests had just started to spread nationwide across
the US, and also become violent.

5.1 Model and Data

In dimension one we had the Twitter data. To control the magnitude of the
data we only considered original tweets, i.e. all retweets were filtered out, that
had at least one retweet, to filter out tweets made by users with a negligible
following. Moreover, we examined the 20 largest communities and identified one
anti-BLM (the same community identified in the previous section), and filtered
out all tweets made by users from that community, so that we only considered
pro-BLM tweets. This left us with 10, 774 tweets.

In the second dimension we had records from the GKG-database from GDELT.
The records were first filtered on mentioned themes, and only those reporting
events of protests were selected. This naturally lead to some noise in the data,
due to not being able to precisely filter out only the events mentioning protests
relating to the Black Lives Matter-movement. To reduce this noise, we also fil-
tered on records that mentioned George Floyd. While in theory a record could
report a BLM related protest without mentioning George Floyd, we reasoned
that since our timeline of interest was three days after his passing, most records
should mention George Floyd to give the reader some context for the reported
protest. To handle that the GKG-database updates in intervals every 15 minutes,
every record got a randomised timestamp in the fifteen minute interval prior to
it being added into the database, to get the records in continuous time. With
this query in the selected time interval, 3, 341 records were found.

Given this data, we jointly model events in social and mass media by fitting
the multivariate Hawkes process in Definition 7. We want to test whether or
not Granger causation exists between dimensions 1 and 2 representing events in
Twitter and events in mass media from the GDELT project, respectively. As per
Theorem 2, parameter α12 = 0 if and only if mass media events do not Granger
cause Twitter events, and vice versa for α21 = 0.

5.2 Results

The data was fitted using python library tick 12. tick requires that the de-
cay parameters βij are given as constants beforehand, which then allows highly
efficient fitting of the remaining parameters µi and αij , using accelerated gradi-
ent descent [6]. The problem of fitting the decay parameter β in the exponential
kernel is well-known [36], and is due to the fact that while the baseline parameter
µ and excitation parameter α can be efficiently computed via convex optimisa-
tion, this is not always true for β. With this in mind, we proposed three different
models where the decay parameters βij were handled differently:

12https://x-datainitiative.github.io/tick/
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– M0: βij = 1, ∀(i, j) ∈ {1, 2} × {1, 2} =: {1, 2}2
– M1: βij = β ∈ (0,∞), ∀(i, j) ∈ {1, 2}2
– M2: βij ∈ (0,∞), ∀(i, j) ∈ {1, 2}2

To compare the different models, we looked at (i) the Akaike information crite-
rion AIC = 2k− 2ln(L̂), where k is the number of estimated parameters, and L̂
is the maximum likelihood of the model, (ii) the relative likelihood exp((AICp −
AICq)/2), where the AIC values for models p and q satisfy AICp < AICq, and

(iii) the likelihood-ratio test statistic λLR = −2ln(L̂p/L̂q).

Comparison between M0 and M1 Setting βij = 1 for all i, j in model M0

gave us the log-likelihood value of 372.981, and AIC = −733.963 (where k = 6
for the two estimated baseline parameters µi and the four excitation parameters
αij . For model M1, we did a sequential grid-search over β’s, by using the convex
optimiser in ticks to quickly obtain the most likely µi and αi,j ’s for each fixed

βi,j = β, to find the most likely parameter β̂ = 6.17, with the maximum log-
likelihood value of 384.771 and AIC = −755.542 (where k = 7 since we now
also estimate β). Note that the known problem [36] of β misbehaving and being
noisy and fluctuating with respect to the likelihood of the model, did not seem
to occur with our data possibly due to (i) the structure or information of our

data, as well as, (ii) our simplectic parametrisation of M2:
∑

ij βij = 4β̂, where

β̂ is the value from model M1 with highest likelihood, for numerically stable
optimisation.

The relative likelihood of the models was 2.0624× 10−5, i.e., model M0 was
2.0624× 10−5 times as probable as model M1 to minimize the information loss.
Since M0 is nested in M1, i.e., the parameter space of M0 is a proper subset
of that of M1, we do a likelihood ratio test and reject M0 in favour of M1

(λLR = 23.5781,p-value < 10−7).

Comparison between M1 and M2 Model M1 and M0 assume that the
decay parameters βij ’s are identically β ∈ (0,∞), i.e., the decay parameter
within each dimension and between every pair of dimensions is given by the same
value. The real-world interpretation of this is that tweets and mass media reports
stay relevant for the same amount of time into the future, which seems like a
major assumption as mass media dissemination and social media communication
are fundamentally different in nature. To account for this, we introduced model
M2, where each βij can vary freely in (0,∞).

We did a sequential grid search over the 4-simplex, similar to the one-
dimensional case of M1, to find the most likely βij ’s, except that we used the
constraint that all βij should lie in the interior of the 4-simplex, induced by

β̂, such that
∑

ij βij = 4β̂, where β̂ = 6.1700. Iterating through 32509 values

we found the most likely values to be β̂11 = β̂22 = 16.170, β̂12 = 3.702, and
β̂21 = 8.638, at the maximum log-likelihood value of 384.772, with k = 10 and
AIC = −749.544. Note that despite having three additional parameters, the
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maximum log-likelihood of M2 is close to that of M1, with the relative like-
lihood of the models, likelihood-ratio test statistic, and p-value being 0.04984,
0.002121, and 0.9971, respectively. We therefore do not reject M1 in favour of
M2 and choose M1 for further analysis.

Fitting the Data using M1 To find whether Granger causality between
the two dimensions exists, we were interested in whether parameters α̂12, α̂21

are equal to 0 or not. Fitting the data using model M1 with estimated decay
parameter β̂ = 6.1700 gave us the following estimated parameters µ̂1 = 1.000,
µ̂2 = 0.998, α̂11 = 0.986, α̂12 = 0.0327, α̂21 = 0.0216, α̂22 = 0.921. Note that
the point estimates satisfying: α̂12 > α̂21 > 0, implies that there exists Granger
causality between reported protests and tweets regarding the BLM-movement,
provided we account for the errors in their estimation, i.e., their confidence
intervals. We address this next using non-parametric bootstraps.

Hypothesis Testing The following null hypotheses were proposed:

– H0,12 : α12 = 0, i.e., reports of protests in mass media do not Granger-cause
communication events in Twitter related to the BLM-movement.

– H0,21 : α21 = 0, i.e., communication events in Twitter related to the BLM-
movement do not Granger-cause reports of protests in mass media.

– H0 : α12 = α21 = 0.

To get the confidence intervals for α12, α21 we did a non-parametric bootstrap
by sampling the observed data with replacement, and then estimating the pa-
rameters on the bootstrapped data under model M1. This was repeated 1000
times.

For α12, i.e., the influence of mass media on Twitter, the 99-th percentile
bootstrapped confidence interval is (0.000, 0.09405), and therefore we cannot
reject the null hypothesis H0,12 that α12 = 0 by the Wald test. Thus, the reports
of street protests in mass media do not Granger-cause the pro-BLM interactions
in Twitter.

On the other hand, the 99-th percentile bootstrap confidence interval for the
parameter α21 that models Twitter’s influence on mass media is (0.01479, 0.02949),
and therefore we reject the null hypothesis H0,21 that α21 = 0 by the Wald test.
Thus, the pro-BLM interactions in Twitter Granger-cause the reports of street
protests in mass media. We therefore also reject the common null hypothesis
that there is no Granger causality whatsoever between social and mass media
events around the BLM-movement, i.e., H0 : α12 = α21 = 0.

To estimate type I error, i.e., the probability of rejecting the null hypothesis
H0, when it is true, we simulated data from the null hypothesis H0, i.e., from
the most likely parameters in M1, while restricting α12 = α21 = 0. For each
such simulated data, we then performed the Wald test using non-parametric
bootstraps by sampling the data with replacement 1, 000 times. Only one out
of 100 such simulations from H0 was rejected giving 0.01 as the Monte Carlo
estimate of the Type I error.
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6 Modelling Retweet Cascades

In this Section we will model the diffusion process of a retweet cascade, given
one initial tweet. For this we will use marked Hawkes processes with the power-
law kernel introduced in Section 2. The motivation for using a marked Hawkes
process stems from the following properties in a retweet cascade, that we seek
to capture:

– Word-to-mouth spread: When a user shares a tweet, the tweet will or-
ganically find its way into a new set of users, and from them into another
new set of users, and so on.

– The magnitude of influence: Users with more followers tend to get more
retweets.

– Memory over time: Most of the retweeting by users happen when they
first see it in their timeline.

– Content quality: The better a tweet is, vaguely speaking, the more retweets
it will get.

Let us now look at the intensity of a marked Hawkes process with a power-law
kernel on R+ × N, where each point (ti,mi) is a retweet at time ti and where
the mark mi is the number of followers of the user who retweets.

λ(t) =
∑

(ti,mi)∈Ht,m

κmβ
i (t− ti + c)−(1+θ) . (8)

The property of word-to-mouth is naturally captured by the self-exciting nature
of Hawkes processes; when a tweet is shared, a new set of users get access to this
tweet in their time-line, and the intensity of the process, i.e., the probability of
a new retweet, will increase. The magnitude of influence is captured by the fact
that we are implementing a marked Hawkes Process. Since we let mi equal the
number of followers of the user who retweets, it follows that users with larger
followings will contribute to a larger jump in intensity, scaled by parameter β.
Since (t − ti + c)−(1+θ) → 0 as t → ∞, the kernel is monotonically decreasing,
and the property of memory over time is taken care of. Furthermore, κ scales
the quality of a tweet, such that, larger values of κ result in larger jumps in
intensity. The motivation for the requirement of this property is that we could
have a relatively large retweet cascade, from a user without a significantly large
following, that results in a large spread.

All of these properties are captured by other marked kernels, and we did
some exploratory fitting using a marked exponential kernel. However, the marked
power-law kernel gave best results as confirmed by related works [28, 41].

6.1 Fitting Marked Hawkes Processes

The marked Hawkes processes with a power-law kernel has four parameters
θ = {κ, β, c, θ}. We estimate these by computing the maximum likelihood. The
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log-likelihood for the intensity is of the following form:

L(κ, β, c, θ | Htn) = logP({(mi, ti), i = 1, ..., n})

=

n∑
i=1

log (λ(ti))−
∫ T

0

λ(τ)dτ

=

n∑
i=2

logκ+

n∑
i=2

log

( ∑
tj<ti

mβ
j

(ti − tj + c)1+θ

)

−
n∑

i=1

∫ T

ti

κmβ
i (t− ti + c)−(1+θ)dt

=

n∑
i=2

logκ+

n∑
i=2

log

( ∑
tj<ti

mβ
j

(ti − tj + c)1+θ

)

− κ

n∑
i=1

mβ
i

[
1

θcθ
− (T + c− ti)

−θ

θ

]
.

(9)

The term
∫ T

0
λ(τ)dτ is a normalisation factor that we get by integrating the

event rate over the time interval (0, T ). This is non-linear optimisation problem
was solved numerically using the R library evently13, which builds on AMPL 14.
Due to the requirement of AMPL, we implement evently in a remote machine
via a Docker container with R and all required packages, in order to obtain the
maximum likelihood fit of the data.

Results The remote machine was set up with 64GB of RAM due to our compute
budget constraints. However, when trying to fit retweet cascades with more than
roughly 3000 retweets, the machine ran into lack of memory errors. Note that
the largest retweets cascades in ourdata set had around 300000 retweets. These
were certainly rare, but would have been interesting to study in more detail. We
should however point out that cascades of around 3000 are still relatively big,
and certainly big enough to model diffusion processes of interest.

Fitting was done on 20 retweet cascades initialised by users from both the
BLM and anti-BLM communities identified in Section 4.2. By just comparing the
plots of the intensities over time, and the fitted parameters, no clear distinction
between cascades from the two communities could be made.

However, in both communities, retweet cascades of the type (Figure 7) where
the intensity suddenly spikes when an influential user joins the diffusion process,
were found.

This phenomena is the most probable explanation for how some of the largest
cascades in thedata set that were initialised by users with relatively small fol-
lowings managed to diffuse to a large group of users.

13https://github.com/behavioral-ds/evently
14https://ampl.com/
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Fig. 6. Cascade initialised by a relatively highly influential user

Fig. 7. Cascade initialised by a non-influential user
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6.2 User Influence

Taking the results from fitting different types of cascades, and discovering the
type of information diffusion where a user with a large following joins the cascade
at a later time, we here present an idea on how to recreate a probable branching
process of the retweet diffusion, using the fitted parameters of the kernel in our
marked Hawkes process.

Definition 12. Given a retweet cascade, let a diffusion scenario G be a directed
tree, where for each vi, vj ∈ G, vi has an edge to vj if the retweet vj is a direct
retweet of vi.

Recall that from Twitters API we have no information on how the actual branch-
ing process initialised, as all retweets point only to the original tweet. The fol-
lowing idea comes from Rizoiu et al. [34].

Definition 13. Let

ϕp(mi, t) = κmβ
i (t+ c)−(1+θ) , (10)

be the marked power-law kernel. We define the probability of direct retweet as:

pij =

{
ϕp(mi,tj−ti)∑j−1

k=1 ϕp(mk,tj−tk)
i < j,

0 i ≥ j.
(11)

The probability of a direct retweet pij thus tells us how likely it was that the j:th
retweet in the cascade was a direct retweet from the i:th retweet, and thus a direct
descendent in the diffusion scenario G. Since we have the marked kernel from the
Hawkes processes in the definition, naturally retweets close to each other in time
will have a higher probability of being direct retweets. The definition also takes
into consideration that users with more followers will have a larger probability
of getting direct retweets.

Definition 14. We define the pairwise influence as:

rij =


∑j−1

k=1 rikpkj i < j,

1 i = j,

0 i > j.

(12)

The pairwise influence gives us a measure of how much influence tweet vi exerts
over retweet vj . This influence can either be via a direct retweet in a diffusion
scenario, but also when vj is an indirect retweet of vi, i.e., when there exists a
path from vi to vj in a diffusion scenario.

Definition 15. We define the total influence of a tweet vi in a retweet cascade
as:

φ(vi) =

n∑
k=1

rik . (13)
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We now have a measure of how influential users are in a retweet cascade. Note
that while we are talking about the influence of a tweet, we are actually taking
the heuristic shortcut and assuming that this is the influence of the user of that
tweet; the reasoning behind defining the influence in terms of tweet influence, is
that technically a user may retweet the same tweet more than once, and these
retweets will then be given different total influence. In Table 5 we present an
example from a retweet cascade.

Time Number of followers Total influence

0.00 1475 195.00
621.00 142881 161.28
565.05 16527 143.13
165.38 2285 118.81
304.53 591 27.39
737.97 27081 24.18
1550.91 51256 22.69
544.08 546 20.32

Table 5. The 8 most influential users in a retweet cascade.

Note that the user who joins the retweet cascade at time 1550.91 is given an
influence score of 22.69, although this user has quite a large following of 51256
users. Compare this to the user who joins the cascade at time 565.05, with a
following of 16527 users. Due to the fact that this user joins the cascade earlier,
their influence score is much higher at 143.13, even though their following is
nearly three times as small.

6.3 Summary

In this Section we modelled retweet cascades using the R library evently. Due
to the limitations of hardware and lack of computational efficiency when fitting
these models, we were only able to look at retweet cascades with magnitude of
roughly 3000 retweets. From the fitting of retweet cascades, two distinct patterns
in the diffusion process were identified; one where the intensity of Hawkes process
starts high and peaks close to the initialisation of the retweet cascade, and one
where the intensity reaches its peak at point later in time after its initialisation.

Influenced by these two patterns, we introduced a heuristic method of mea-
suring influence scores of users in a retweet cascade, by recreating a probabilistic
diffusion process retroactively via the fitted Hawkes process. While no major con-
clusions from this will be drawn in this Section, our hope is that these models
can be used as tools in other fields, e.g., social sciences, for doing comparative
research jointly with insights from field and/or online ethnography. In an ideal
setting, with a better scalable estimator for the parameters at hand or with a
larger compute budget for single machine with more memory, we would be able
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to fit all retweet cascades in our data set, which in turn would allow us to do
more interesting analysis, such as looking at the distribution of the parameters
and also identifying the most influential users for the whole data set, by summing
and normalising the users’ influences from all cascades.

6.4 Related Work

The idea of using Hawkes processes to model information diffusion and in par-
ticular retweet cascades is well established, often in the context of predicting,
the final size of a retweet cascade given the first initial tweets in a given time
interval. In this Subsection we present brief overviews of some related work.

A well known model for prediction is the SEISMIC (Self-Exciting Model
of Information Cascades) model by Zhao et al. [41]. The SEISMIC model also
implements a marked Hawkes process with a power law kernel, but unlike our
approach, they fix parameters for the kernel for all retweet cascades. Instead
they extend the Hawkes process by introducing a infectiousness parameter pt,
which aims to model how likely a post is to be re-shared at time t.

The intensity for their point process is of the form:

λ(t) = pt ·
∑

(ti,mi)∈Ht,m

ϕmi
(t− ti) , (14)

which is a Cox-process (i.e., a double stochastic process), since the infectiousness
pt is stochastic. The main idea for SEISMIC is then to, given a retweet cascade
at some fixed time t (e.g., t = 60 minutes) find an estimate of the infectiousness
p̂t (which is bounded by p̂t < 1

ν , to not explode exponentially and where ν is
the branching factor of the Hawkes process) and then from p̂t estimate the final
size of the retweet cascade.

Mishra et al.’s [28] approach – which was our main source of inspiration for
the modelling done in this Section – also presents models for prediction, and
argues that the kernel of the Hawkes process should not be fixed, since retweet
cascades may die out quickly or slowly and still end up with roughly the same
number of retweets. Therefore, they fit each cascade in a similar fashion as was
done by us using a non-linear solver. Moreover, they add a predictive layer using
the estimated parameters as features and then train a Random Forest regressor,
to predict the final size of the cascade after a given initial time. They also
introduce a purely feature driven predictor with basic user features (number of
followers, number of posts etc.), temporal features (waiting time for posts in
the cascade), volume (i.e., the size of the cascade at the given time), past user
success (average size of cascades previously initialised by the given user), and –
perhaps more interestingly in the context of this work – a hybrid model, which
combines the Hawkes process with a predictive layer, and the purely feature-
driven predictor.

All three of these models outperform the SEISMIC model when tested on
two data sets (where the first one is the same data set used in Zhao et al. for
the SEISMIC model) containing cascades of size greater or equal to 50, with
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30463 and 110954 cascades, respectively, and mean length of 160 and 158, and
median of 95 and 90, respectively. Note that most cascades are therefore rather
small compared to the cascades we managed to fit from the BLM data set.
Moreover, all predictors based on Hawkes processes will fail when the conditional
intensity at the time of prediction is too high, i.e., when the branching factor
ν ≥ 1 in Mishra’s models, and when the infectiousness parameter p ≥ 1

ν . This
suggests that there is an upper bound on the magnitude of retweet cascades,
when successfully modelling via such Hawkes processes.

In Zhou et al. [42] a multivariate Hawkes process is implemented to discover
the social influence of users in a network. In the article, a multivariate Hawkes
process in 500 dimensions, each representing a popular website, is fitted on a
data set containing timestamps of the event that one of the 500 sites creates a
hyperlink to another site, to find the most influential sites that are quickest in
detecting trends on the internet, and moreover the community structure of these
sites.

The main idea is to let every user u = 1, . . . , U in the data set be represented
by one dimension in a multivariate Hawkes process in U dimensions. The esti-
mated baseline intensities µu, and excitation parameters αuv (which captures
the influence of excitation from dimension v to u) are collected into matrix form
µ = µu,A = αuv, where A is defined as the infectivity matrix. To estimate
the parameters in the Hawkes process, a low-rank and sparse regularisation is
imposed on A. The motivation for this is that the sparsity of the infectivity
matrix A captures the fact that most users only influence a small number of
users, while there can be a few very influential users. The low-rank structure
of A is meant to capture the structure of communities in the network of users,
where we interpret a set of linear dependent column vectors as a community.
An algorithm for solving the optimisation problem of estimating A so that it is
both low-rank and sparse is presented in their article.

This approach should in theory work for Twitter data and its restrictions
given by the API, and could then be another way of identifying influential users
and community structures. The data would then be tweets represented as a tuple
of a timestamp and user, with no regard to whether they are original tweets
or retweets. Other features such as how many followers a user has would also
be discarded. The estimated influence of a user u in the data set, would then
be given by the u:th column in the low-rank and sparse estimated infectivity
matrix A. We note that our approach to community detection in Section 4.2
is complementary to this approach as it uses the retweet network directly via
distributed label propagation to identify ideologically diverse communities in a
manner that allows to drill down to individual influential tweets within each
community, while allowing for arbitrary sizes or the activity levels within each
community.
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7 Conclusion

We set out to ask the most basic question of whether peoples still have power in
taking collection real-world action despite the concentrated ownership of mass
media with their propaganda model of communication and the algorithmic at-
tention rent seeking business models of corporate social media platforms, albeit
to a lesser extent in Twitter during the summer of 2020 compared to its current
revised business model. We find with some optimism that the answer is yes and
peoples’ power seems to be alive and kicking from our statistical hypothesis test-
ing and analysis of social and mass media events around the Black Lives Matter
(BLM) movement and its counter-movements during the summer of 2020 using
mathematical models conducive to causal studies.

More specifically, we jointly model and test hypotheses about causal rela-
tionships between interactions in social media and the reports in mass media
during the BLM protests following the death of George Floyd, by implementing
open-source pipelines through MEP and SPARK-GDELT to process the data, i.e.,
extract, load, transform, explore, from scratch and at scale, on cloud infrastruc-
ture, and by employing self-exciting Hawkes processes and their Granger causal
inference machinery.

We reject the null hypothesis that there is no causal relationship, and show
that communication events in Twitter, surrounding tweets that supported the
BLM movement, Granger-caused the reports of street protests in mass media
from the GDELT project. However, we cannot show that the reporting of street
protests in mass media Granger-caused the corresponding communication events
in Twitter. We identified such pro-BLM tweets thorough a network analysis of
the Twitter data to identify communities of users who have a shared ideology
among an ideologically diverse set of communities. We also model social me-
dia diffusion process using specialised kernels towards understanding how and
when information is spread influentially as cascades into the socially networked
communities.

We thus establish a verifiable causal relationship between social media inter-
actions in Twitter that are supportive of the global BLM social movement on
one hand, and global mass media reports of street protests in solidarity with the
movement on the other. This suggests that activists have harnessed social media
to raise awareness and mobilise street protests in a one-way causal relationship
whereby pro-BLM social media communications Granger-cause the reports of
street protests by mass media.
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