
The Transmission Process: A Combinatorial Stochastic
Process on Binary Trees over the Contact Network of Hosts
in an Epidemic
UCDMS Research Report No. UCDMS2015/4,

School of Mathematics and Statistics, University of Canterbury, Christchurch, NZ

Raazesh Sainudiin · David Welch

Abstract We derive a combinatorial stochastic process for the evolution of the trans-
mission tree over the infected nodes of a host contact network in a susceptible-
infected (SI) model of an epidemic. This is an explicit description of the transmis-
sion process on the product state space of (rooted planar ranked labelled) binary
transmission trees and labelled host contact networks with SI-tags as a discrete-state
continuous-time Markov chain. We give the exact probability of any transmission tree
under various equivalence classes when the host contact network is a complete, star
or path network – three illustrative examples. We then develop a biparametric Beta-
splitting model that directly generates transmission trees without explicitly modeling
the underlying contact network and show that for specific values of the parameters we
can get the exact probabilities for our three example networks. We use the maximum
likelihood estimator to consistently infer the two parameters driving the transmis-
sion process based on observations of the transmission trees. Finally, we show that
as the underlying contact networks are interpolated smoothly across the three exam-
ple networks, the maximum likelihood estimator of the parameters obtained from the
corresponding transmission trees are consistent and change smoothly. This suggests
that the biparametric Beta-splitting family of transmission trees can be thought of as
being generated by contact networks that smoothly span over a large and rich class
of networks beyond the three illustrative examples.
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1 Introduction

The detailed picture of the path an epidemic takes through a population over its course
is encapsulated in the transmission tree. To understand the process by which a trans-
mission tree grows, we need to consider (i) the structure of the population in which
the epidemic spreads and (ii) the state of the individuals in the population as the
epidemic spreads. Network models are a natural candidate for describing population
structure where the population is identified with a network in which each vertex rep-
resents an individual and an arc (a directed weighted edge) from vertex ıi to ı j, given
by a non-negative wi, j ∈ [0,∞), represents the propensity with which the infection
can be transmitted from ıi to ı j. This propensity can be given meaning in terms of
frequency of contacts by taking each wi, j > 0 to specify independent rate-wi, j Pois-
son process for the contact times between ıi and ı j, for instance (this is the “meeting
process” of Aldous (2013)). We call these networks contact networks and assume
that they are fixed or static through time. Thus, the contact network of a population
summarizes ‘who can contact whom and how frequently’ and is depicted in Fig. 1(a)
for a small population with nodes labeled by individuals ı1, ı2, . . . , ı9 (the edges are
undirected).
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Fig. 1 Spread of an epidemic over (a) the contact network of a population as shown by (b) a sub-network
where edges representing transmission events are labelled by the time of event and the infected nodes are
colored red and (c) the corresponding transmission tree.

The epidemic state of each individual at a given time can be in one of several
possible states, depending on the particularities of the epidemic model. The simplest
case, known as the SI model, involves only two states that indicate whether an indi-
vidual at a given time is susceptible (S) to or infected (I) by a pathogen. Under this
model, the only possible state transition is from S to I as specified by the contact
network. In other words, a susceptible individual can be infected by any individual in
its in-neighbourhood who is already infected. The contact network whose individual
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vertices are “tagged” by their epidemic states (S or I) is called the tagged contact
network. The epidemic states of the individuals in the population after some time are
shown by tagging (coloring) the infected or susceptible individuals with I or S tags
(red or white colors) in Fig. 1(b).

The transmission digraph, a directed edge-labeled subgraph of the contact net-
work containing all infected nodes and directed edges labelled by the time of trans-
mission is a basic object of interest. It is depicted in Fig. 1(b). The transmission
digraph can also be represented by the more convenient transmission tree shown
in Fig. 1(c). The internal vertices of the transmission tree correspond to times of
transmission events, the below (or left) and above (or right) planar sub-trees encode
who infected whom, and the leaf nodes correspond to the set of infected individuals.
Since the tagged contact network co-evolves with the transmission tree, the trans-
mission process is naturally seen as a Markov chain on the product space of tagged
contact networks and transmission trees. We consider a stochastic model, as opposed
to a deterministic one, to be natural because the spread of an epidemic is inherently
probabilistic (Andersson and Britton, 2000).

The transmission tree captures several details about how an infection spreads
through the population, including combinatorial structural information such as: who
infected whom, order and timing of infection events, the time it takes for a specified
set of individuals to be infected, tree shape statistics such as indices of Sackin (1975)
and Colless (1982), number of cherries or sub-terminal nodes (McKenzie and Steel,
2000), etc., various isomorphism classes, such as, (un)ranked/(non)planar unlabelled
trees and so on, but also classical epidemiological univariate statistics, such as preva-
lence and incidence through time, reproduction numbers, total time of epidemic and
so on.

While various analytical results are available for the univariate epidemiological
statistics and can often be obtained without explicitly modelling the tree, most in-
sights about the structural information in the tree are difficult to derive analytically
and so are based on simulation studies over parametric families of specific models.

Empirical efforts to understand the transmission process have historically focused
on time series and individual event times (such as infection or recovery times) as the
main data source. These relatively sparse forms of data have been difficult to collect
and not particularly informative, providing limited information about the transmis-
sion tree (but see Haydon et al, 2003; Wallinga and Teunis, 2004) or the underlying
contact network.

Recently, there has been an increasing attention paid to using the large amounts
of viral and bacterial genomic data now available to study outbreaks. The key obser-
vation suggesting this data will be informative about the transmission tree is that, if
there is little within-host viral genetic diversity, the phylogenetic tree of pathogenic
genomes will match the transmission tree (though, in many cases, this assumption
does not hold (Romero-Severson et al, 2014; Ypma et al, 2013)). This insight has
seen the rise of a new area of research, known as phylodynamics (Grenfell et al,
2004), that specifically treats genomic data in the context of infectious diseases.

The ultimate goal of phylodynamic methods would be to reconstruct the trans-
mission tree (or some sampled subtree) and therefore any interesting properties of
the epidemic process. To approach this goal, we need to have good models of how
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transmission trees grow which, in turn, requires a thorough understanding of how the
structure of the network influences the topology of the transmission tree (Frost et al,
2015).

Previous work on how network structure influences tree topology used computer
simulations to vary some property of the network while attempting to hold others
constant and observing their influence on simulated transmission trees. For example,
Leventhal et al (2012) investigated a number of standard random network models
(Erdos-Renyi, Barabasi-Albert and Watts-Strogatz) with a range of parameter val-
ues to show that gross changes in the network structure can cause significant and
detectable changes in the resulting transmission tree, as measured using the Sackin
index of tree imbalance. Frost and Volz (2013) suggest that while this effect is real, it
may be swamped by other effects such as sampling strategy. O’Dea and Wilke (2010)
concentrate on varying degree heterogeneity in the contact network while holding
mean degree constant and also find that heterogeneity is detectable in the transmission
tree using standard phylogenetic methods. Welch (2011) employs a simulation ap-
proach to study the effect of clustering on transmission trees using exponential family
random graph models (ERGMs). Clustering is the most basic of pure network proper-
ties, reflecting transitivity (or anti-transitivity) in relationships: if edges (i, j) and (i,k)
are present, then high (low) clustering in the network implies that ( j,k) is more (less)
likely present than when (i, j) and (i,k) are not present. While some changes in vari-
ous measures of the transmission tree are observed as clustering changes over a wide
range of values with degree distribution held constant, a strong effect is not observed
suggesting that inference of the clustering property would be difficult. More recent
work (Colijn and Gardy, 2014) describes a method that roughly classifies epidemics
into host population structures such as homogeneous, super-spreading (Lloyd-Smith
et al, 2005) or having a path-like contact network using machine-learning classifiers
trained on simulated data.

There is no work that we know of that explicitly estimates a contact network as
we have described it here based on transmission trees or genetic data, though some
early, ad-hoc attempts exist (Leigh Brown et al, 2011). There is a series of papers
(Britton and O’Neill, 2002; Groendyke et al, 2011, 2012) that uses time-series data
from epidemics to infer the parameters of an ERGM but the transmission tree here is
incidental and poorly inferred. Groendyke et al (2012) suggest that inference within
this framework would be greatly improved by having more informative data.

Thus, insights in the literature about the structural or topological information in
the tree are primarily based on simulation-intensive programs over parametric fami-
lies of specific models of the epidemic and the contact network. Formalizing a large
class of such simulation programs as a discrete-time Markov chain with transition
probabilities in Eq. (2.1) that is embedded in the continuous-time Markov chain with
generator in Eq. (2.2) is our first contribution. Such a formalization along with the
SageMath/Python code in Sect. A.1 concretizes the meaning of the transmission pro-
cess, which currently does not seem to be defined unambiguously in the literature.

Models for population structure have increased in complexity over the years; from
simple homogeneous models over a static complete network in which each individual
has an equal propensity to infect any other individual, to ones which incorporate
varying degrees of heterogeneity across the population (who can infect whom) and
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through time (time-varying contact networks). Recent reviews by Pastor-Satorras et al
(2015) and Holme (2015) summarize this literature.

Basic phylogenetic models such a Kingman’s coalescent (Kingman, 1982) that
are used for phylodynamic inference assume a fully mixing population of genomes,
an assumption that is typically violated in host populations when observed on the epi-
demic time-scale. Moving to a more complex model such as the structured coalescent
(Hudson, 1990; Notohara, 1990) or multi-type branching process (Stadler and Bon-
hoeffer, 2013) allows incorporation of a few large population features such as country
of sampling, but struggles to deal with more than four or five homogeneously mixing
population groups at a time (Vaughan et al, 2014; Stadler and Bonhoeffer, 2013; Ras-
mussen et al, 2014) and is therefore far from the fine scale heterogeneity of a given
static contact network — our main focus in this paper.

Although static networks are epidemiologically reasonable approximations when
the speed of epidemic spread is much faster than the speed of change in the popula-
tion’s structure or vice versa in the case of annealed networks (Pastor-Satorras et al,
2015, III.E), our restriction to static networks in this paper is motivated by finding
the simplest and yet interesting mathematical setting to formulate the transmission
process. We restrict our attention to the simplest epidemic model on a given static
contact network in order to focus on explicitly modeling the random transmission
tree itself, as the epidemic spreads through the population. To the best of our knowl-
edge, Markov models of transmission trees, over a fixed contact network, and their
probabilities are not available explicitly as a function of both branch-lengths and tree
topologies even for well-known networks. A straightforward derivation of the proba-
bilities of transmission trees in Sect. 2.1 for some simple static contact networks from
the general Markov chains of Eqs. (2.1) and (2.2) is the second contribution of this
paper. These examples are meant to illustrate that the general formulae hold for some
special cases of contact networks.

We also restrict our attention in this paper to the most basic transmission process
which we describe as an SI epidemic model in which hosts are either susceptible
(S) to or infected (I) by a pathogen. Our restriction to the simplest model is due to
the following reasons. First, this model can be seen as the two-state Finite Markov
Information Exchange (FMIE) process (Aldous, 2013, Sec. 2.2) called the Pandemic
Process (Aldous, 2013, Sec. 7) that is shown to be a fundamental building-block
(Aldous, 2013, Sec. 3.2,7) for a large class of FMIE processes which includes various
classical epidemic models (see Aldous, 2013, Sec. 8,9 and references therein). For
instance, the SI model exhibits the fastest possible spread of information in any FMIE
model (Aldous, 2013, Sec. 3.2) and it approximates the initial time evolution of the
SIS (where infectious hosts return to susceptibility) and SIR (where infectious hosts
are removed from the population) models (Pastor-Satorras et al, 2015, II.A). Second,
we are mainly interested in allowing the underlying contact network to be essentially
‘arbitrary’, but fixed. Specifically, we develop a biparametric Beta-splitting family of
models for the growth of transmission trees via pure birth events in Sect. 3 that has
the following properties:

– gives the exact probability of any transmission tree as a function of α and β ,
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– avoids having to explicitly model the underlying contact network that is typically
unobservable,

– can be interpreted in terms of a Beta-splitting construction for the “infection po-
tential” of the infector and the infectee in a transmission event,

– contains the models generated by the complete, star and path networks when
(α,β ) equals (0,0), approaches (∞,−1) and (−1,∞), respectively,

– smoothly interpolates between the complete, star and path networks,
– has explicit expressions for its maximum likelihood estimators from independent

observations of the transmission trees and
– gives the exact probability of various equivalence classes of transmission (unla-

belled) trees that are (un)ranked/(non)planar with or without continuous branch-
lengths.

This is the most important contribution of this paper and is to be contrasted with what
is typically done in the literature since 2000 according to Aldous (2013, Sec. 2.4),
whereby various quantitative statements (not of the structural properties of the trans-
mission tree itself but of its univariate summary statistics such as the time for a ran-
dom individual to be infected) are made on more complex models with increasingly
elaborate update rules while considering only a standard number of fixed network
“geometries” (or structures) as specific contact networks or as specific random con-
tact networks.

The remainder of the paper is organised as follows. In Sect. 2 we introduce the
model for the random growth of a transmission tree over an arbitrary contact network
as a discrete-state continuous-time Markov chain and give examples of transmission
trees on three specific networks. In Sect. 3 we introduce a parametric Beta-splitting
model for the transmission tree, derive the likelihood for a given tree and explore
the relationship between this beta-splitting model and the coupled transmission tree-
contact network model described in Sect. 2. In Sect. 4 we discuss future directions
that this work may take.

2 Model

Consider a population of n individuals with labels in In = {ı1, ı2, . . . , ın}. Let i(z) :
Z+ → [n] be a map from the set of non-negative integers Z+ := {0,1,2, . . .} to the
set of natural numbers no greater than n, [n] := {1,2, . . . ,n}, so that, ıi(z) ∈ In denotes
the z-th infected individual as the epidemic evolves in the population. Thus, ıi(0) is
the initially infected individual in the population. In the example of Fig. 2, ıi(0) = ı2.

Augment each vertex ı j in In with a binary status tag:

s j =

{
1 if ı j is susceptible
0 if ı j is infected

Thus the status of each vertex ı j ∈ In is:

s := {s j : ı j ∈ In} ∈ {0,1}In
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Let kn be the complete weighted directed graph or network over the vertex set In with
weighted directed edge set wn := {w(ıi, ı j) ∈ [0,∞) : ıi 6= ı j,(ıi, ı j) ∈ I2

n}. Let 2wn be
the power set of wn, i.e., the set of all subsets of wn. For the given set of labelled
individuals in the population In, let the susceptible-infected contact network or SICN
be the double

c = (w,s) ∈ Cn := 2wn ×{0,1}In

that is comprised of a weighted directed edge set w ∈ 2wn and status tags of the
individuals s ∈ {0,1}In . Now, for each z ∈ Z+, let c(z) : Z+→ Cn give the SICN at
discrete time z standing for the z-th infection event.

We can view the discrete-time discrete-space Markov chain with state space Tn×
Cn, the product space of Tn, rooted planar ranked leaf-labelled binary transmission
trees, and Cn, the set of SICNs on In. A sample path of this Markov chain for a
population of size 3 is shown in Fig. 2. We give the one-step transition probabilities
for this Markov chain next.

Let L(m;τ(z)) or R(m;τ(z)) denote the label of the left or right node, respectively,
subtending from the internal node labelled by m in τ(z), the transmission tree at time
z. Let L(τ(z)) denote the set of leaf nodes, i.e., the set of potential infectors, of τ(z)
and let w(ıi, ı j; c(z)) denote the weight of the edge between nodes labelled by ıi and ı j
in c(z), the SICN at time z. Then, the one-step transition probabilities for the discrete-
time discrete-space transmission Markov chain is:

Pr((τ(z+1),c(z+1))|(τ(z),c(z)))

=



w(L(z+1;τ(z+1)),R(z+1;τ(z+1));c(z))
∑

∀ı`∈L(τ(z))
∑

∀ı j∈In:
s j(z)=1

w(ı`,ı j ;c(z))
if (τ(z),c(z))≺ (τ(z+1),c(z+1))

0 otherwise.

(2.1)

By the immediate precedence relation: (τ(z),c(z))≺ (τ(z+1),c(z+1)), we mean
that (τ(z+ 1),c(z+ 1)) can be obtained from (τ(z),c(z)) by a single transmission
event. Note that L(z+ 1;τ(z+ 1)) and R(z+ 1;τ(z+ 1)) are the latest or (z+ 1)-th
infector and infectee labels in In.

Thus, in words, the transition probability of reaching state (τ(z+ 1),c(z+ 1))
from state (τ(z),c(z)) is w(L(z+1;τ(z+1)),R(z+1;τ(z+1)); c(z)), the weight of
the edge from the (z+1)-th infector to the (z+1)-th infectee, that is normalized by
the sum of the edge-weights w(ı`, ı j;c(z)) from every potential infector, i.e., ∀ı` ∈
L(τ(z)), to every potential infectee within its susceptible out-neighborhood of the
SICN at time z, i.e., ∀ı j ∈ In such that s j(z) = 1.

Independent samples of transmission trees from the Markov chain with transi-
tion probabilities in Eq. (2.1) over a given SICN C and an initial infected individual
initialI can be generated using transmissionProcessTC(C,initialI), an al-
gorithmic implementation using SageMath/Python (Developers, 2015) in Sect. A.1.

By allowing the time for each infection event to be exponentially distributed with
rate λ > 0, we obtain a continuous-time discrete-space Markov chain from the jump
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Fig. 2 A sequence of states from the product state space of transmission trees and contact networks in
the discrete-time discrete-space jump Markov chain embedded in the transmission process. Initially (left
panel) the transmission tree has the root node labelled by the first infected individual ıi(0) = ı2 with the
corresponding complete contact network k3 with nodes colored by their susceptible (lightly shaded) or
infected status (darkly shaded) over a population of 3 individuals labelled by I3 = {ı1, ı2, ı3}. After the
first transmission event from ı2 to ı3 with probability 1/2, the transmission tree splits with the internal
node labelling the first infection event by 1 and the first infector ı2 labelling its left leaf node and the first
infectee ıi(1) = ı3 labelling its right leaf node (middle panel). In the final absorbing state (right panel),
with probability 1/2, the transmission tree has a new internal node labelled by 2 for the second infection
event with its left leaf node labelled by the second infector ı3 and its right leaf node labelled by the second
infectee ıi(2) = ı1.

chain in Eq. (2.1) with the following generator:

q((τ(z),c(z)),(τ(z+1),c(z+1)))

=



λ w(L(z+1;τ(z+1)), if (τ(z),c(z))
R(z+1;τ(z+1)); c(z)) ≺ (τ(z+1),c(z+1))

−λ ∑∀`∈L(τ(z)) ∑∀ı j∈In:
s j(z)=1

w(ı`, ı j;c(z)) if (τ(z),c(z)) = (τ(z+1),c(z+1))

0 otherwise.
(2.2)

Note that the parameter λ is usually called β in the epidemiology literature; we use
λ to avoid confusion with notation introduced later in the article.

Remark 1 This continuous-time transmission Markov chain and its embedded jump
chain is nonparametric since the underlying state space allows for transmission trees
to encode an SI epidemic evolving on arbitrary contact networks, i.e., any element of
2wn . We mainly formulate the model to be concrete about what is typically simulated
by computational epidemiologists. We will often, as done in epidemiology, assume
that the edges are bi-directional or “undirected”. We also focus on connected contact
graphs under the assumption that the ideas can be applied to each connected compo-
nent of a disconnected contact network (but see Sect. 4 for generalization to generic
digraphs that may contain a strongly connected giant component).

To gain concrete insights, let us consider the generator of Eq. (2.2) for three spe-
cific cases of the contact network.
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2.1 Examples

Let us look at Eq. (2.2) for specific initial SICN and initial distributions for the 0-th
infected individual. We focus on three of the simplest contact networks to concretely
study the effect on the transmission tree distributions they induce.

2.1.1 Transmission on complete network

If the contact network is initially the complete network, i.e., complete weighted di-
rected graph, kn on In with weights w(ıi, ı j) = 1 for each ıi 6= ı j, then since there
are z infected individuals and n− z individuals in each of their susceptible out-
neighborhoods after the z-th infection event, the one-step transition probability in
Eq. (2.1) simplifies to the following:

Pr((τ(z+1),c(z+1))|(τ(z),c(z))) =


1

z(n−z) if (τ(z),c(z))≺ (τ(z+1),c(z+1))

0 otherwise,
(2.3)

and the generator Eq. (2.2) simplifies to the following:

q((τ(z),c(z)),(τ(z+1),c(z+1)))

=


λ if (τ(z),c(z))≺ (τ(z+1),c(z+1))
−λ z(n− z) if (τ(z),c(z)) = (τ(z+1),c(z+1)), |L(τ(z))|= z
0 otherwise.

(2.4)

If we assume that the first infected individual ıi(0) is uniformly distributed in In,
then the probability of a discrete transmission tree τ(k) with k infection events, where
1≤ k < n is

Pr(τ(k),c(k)) = Pr(τ(0),c(0))×
k

∏
z=1

Pr((τ(z),c(z))|(τ(z−1),c(z−1)))

=
1
n
×

k

∏
z=1

(
1
z
× 1

n− z

)
=

(n− k−1)!
n! k!

(2.5)

Due to independent exponential waiting times at rate λ , the probability of a trans-
mission tree with branch-lengths t1:k := (t1, t2, . . . , tk) belonging to t1:k +dt1:k, after k
infection events, is:

Pr(τ(k),c(k), t1:k +dt1:k) = Pr(τ(k),c(k))×Pr{t1:k +dt1:k}

= Pr(τ(k),c(k))×
k

∏
z=1

z(n− z)λ exp(−λ z(n− z)tz)dtz

=
1
n

k

∏
z=1

(λ exp(−λ z(n− z)tz))dtz (2.6)
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Note that when z= n−1 and the entire population is infected, then each of the discrete
transmission trees (ignoring the branch-lengths) with n leaves labelled by In is equally
likely:

Pr(τ(n−1),c(n−1)) =
1
n
×

n−1

∏
j=1

(
1
j
× 1

n− j

)
=

1
n!(n−1)!

Thus, the number of discrete transmission trees over the complete SI contact network,
initialized uniformly at random from any individual in In, for different values of n ∈
{1,2,3,4,5,6,7,8,9,10, . . .} is given respectively by:

{1,2,12,144,2880,86400,3628800,203212800,14631321600,1316818944000, . . .} .

2.1.2 Transmission on star network

If the only initially infected individual is ıi(0) = ı? ∈ In and the initial SI contact
network is the star network, ?n, centered at ı? with directed edge weights {w(ı?, ı j) =
1 : ı j ∈ In \ ı?}, then since there are n− z individuals in the non-empty susceptible
out-neighborhood of the only possible infector ı? after the z-th infection event, the
one-step transition probability in Eq. (2.1) simplifies to the following:

Pr((τ(z+1),c(z+1))|(τ(z),c(z))) =


1

(n−z) if (τ(z),c(z))≺ (τ(z+1),c(z+1))

0 otherwise,
(2.7)

and the generator in Eq. (2.2) simplifies to the following:

q((τ(z),c(z)),(τ(z+1),c(z+1)))

=


λ if (τ(z),c(z))≺ (τ(z+1),c(z+1))
−λ (n− z) if (τ(z),c(z)) = (τ(z+1),c(z+1)), |L(τ(z))|= z
0 otherwise.

(2.8)

Let 1ı?(ıi(0)) = 1 if the only initially infected individual is ı? on the star SICN
with source node ı?, and 0 otherwise. Then the probability of a discrete transmission
tree τ(k) with k infection events, where 1≤ k < n is

Pr(τ(k),c(k)) = Pr(τ(0),c(0))×
k

∏
z=1

Pr((τ(z),c(z))|(τ(z−1),c(z−1)))

= 1ı?(ıi(0))×
k

∏
z=1

(
1

n− z

)
= 1ı?(ıi(0))

(n− k−1)!
(n−1)!

(2.9)

Due to independent exponential waiting times at rate λ , the probability of a trans-
mission tree with branch-lengths t1:k := (t1, t2, . . . , tk) belonging to t1:k +dt1:k, after k
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Fig. 3 A sequence of states from the product state space of transmission trees and contact networks in
the discrete-time discrete-space jump Markov chain embedded in the transmission process. Initially (left
panel) the transmission tree has the root node labelled by the first infected individual ıi(0) = ı? = ı3 with the
corresponding star network ?3 with nodes colored by their susceptible (lightly shaded) or infected status
(darkly shaded) over a population of 3 individuals labelled by I3 = {ı1, ı2, ı3}. After the first transmission
event from ı3 to ı1 with probability 1/2, the transmission tree splits with the internal node labelling the
first infection event by 1 and the first infector ı3 labelling its left leaf node and the first infectee ıi(1) = ı1
labelling its right leaf node (middle panel). In the final absorbing state (right panel), with probability 1, the
transmission tree has a new internal node labelled by 2 for the second infection event with its left leaf node
labelled by the second infector ı3 and its right leaf node labelled by the second infectee ıi(2) = ı2.

infection events, is:

Pr(τ(k),c(k), t1:k +dt1:k) = Pr(τ(k),c(k))×Pr{t1:k +dt1:k}

= Pr(τ(k),c(k))×
k

∏
z=1

(n− z)λ exp(−λ (n− z)tz)dtz

= 1ı?(ıi(0))
k

∏
z=1

(λ exp(−λ (n− z)tz))dtz. (2.10)

Note that when z = n− 1 and the entire population is infected, then each of the
discrete transmission trees with the “left-branching comb” topology (ignoring the
branch-lengths) with the left-most leaf labelled by the the first infected individual
ıi(0) = ı? and whose remaining n− 1 leaves is labelled from In \ ı? with uniform
probability:

Pr(τ(n−1),c(n−1)) = 1ı?(ıi(0))×
n−1

∏
j=1

1
n− j

= 1ı?(ıi(0))
1

(n−1)!

Thus, the number of discrete transmission trees over a star contact network on In with
the initially infected individual having degree n−1 is (n−1)!.

2.1.3 Transmission on path network

If the contact network is the path network on In with directed edge weights equalling
1 along a linear path, and the initial infected individual ıi(0) is at the beginning of
the path, then since there is exactly 1 individual in the non-empty susceptible out-
neighborhood of the only possible infector after the z-th infection event, the one-step



12 Raazesh Sainudiin, David Welch

transition probability in Eq. (2.1) simplifies to the following:

Pr((τ(z+1),c(z+1))|(τ(z),c(z))) =


1 if (τ(z),c(z))≺ (τ(z+1),c(z+1))

0 otherwise,
(2.11)

and the generator in Eq. (2.2) simplifies to the following:

q((τ(z),c(z)),(τ(z+1),c(z+1)))

=


λ if (τ(z),c(z))≺ (τ(z+1),c(z+1))
−λ if (τ(z),c(z)) = (τ(z+1),c(z+1)),
0 otherwise,

(2.12)

Let 1ı↪→(ıi(0)) = 1 if the only initially infected individual is ı↪→ at the beginning
of the path and 0 otherwise. Then the probability of a discrete transmission tree τ(k)
with k infection events, where 1≤ k < n is

Pr(τ(k),c(k)) = Pr(τ(0),c(0))×
k

∏
z=1

Pr((τ(z),c(z))|(τ(z−1),c(z−1))) = 1ı↪→(ıi(0))

(2.13)

Due to independent exponential waiting times at rate λ , the probability of a trans-
mission tree with branch-lengths t1:k := (t1, t2, . . . , tk) belonging to t1:k +dt1:k, after k
infection events, is:

Pr(τ(k),c(k), t1:k +dt1:k) = Pr(τ(k),c(k))×Pr{t1:k +dt1:k}

= 1ı↪→(ıi(0))×
k

∏
z=1

λ exp(−λ tz)dtz

Thus when z = n− 1 and the entire population is infected, the discrete trans-
mission tree with the “right-branching comb” topology (ignoring the branch-lengths)
with the right-most leaf labelled by the latest infectee is the only possible one.

2.2 Branch-lengths

We can obtain the expected branch-length of the transmission tree between the (z−
1)-th and z-th infection event or equivalently when there are z infected individuals by
simply taking the mean of the exponentially distributed holding-time random variable
in the generators given by Eqs. (2.4), (2.8) and (2.12) as shown in Fig. 5. Here we
take the 0-th infection event as the initial infection.

Thus, if the underlying SI contact network is kn then initially at the start of
the transmission, the transition rate is λ1× (n− 1) with expected branch-length
E(T1) = 1/(λ (n−1)), where T1 is the duration of the epoch when there is only one



The Transmission Process 13

ı3
,

ı3

ı1 ı2

1−→

1

ı3 ı1
,

ı3

ı1 ı2

1−→

1

ı3 2

ı1 ı2
,

ı3

ı1 ı2

Fig. 4 A sequence of states from the product state space of transmission trees and contact networks in
the discrete-time discrete-space jump Markov chain embedded in the transmission process. Initially (left
panel) the transmission tree has the root node labelled by the first infected individual ıi(0) = ı3 with the
corresponding path network with directed edge set {(ı3, ı1),(ı1, ı2)} and nodes colored by their susceptible
(lightly shaded) or infected status (darkly shaded) over a population of 3 individuals labelled by I3 =
{ı1, ı2, ı3}. After the first transmission event from ı3 to ı1 with probability 1, the transmission tree splits
with the internal node labelling the first infection event by 1 and the first infector ı3 labelling its left leaf
node and the first infectee ıi(1) = ı1 labelling its right leaf node (middle panel). In the final absorbing state
(right panel), with probability 1, the transmission tree has a new internal node labelled by 2 for the second
infection event with its left leaf node labelled by the second infector ı1 and its right leaf node labelled by
the second infectee ıi(2) = ı2.

Fig. 5 Expected branch-lengths when there are z infection events or z+ 1 infected individuals, E(Tz),
for the three cases. Here n = 50 and λ = 1. E(Tz) = 1/λ = 1 with the path network pn of Sect. 2.1.3,
E(Tz) = 1/(λ (n− z)) = 1/(50− z) with the star network ?n of Sect. 2.1.2 and E(Tz) = 1/(λ z(n− z)) =
1/(z(50− z)) with the complete network kn of Sect. 2.1.1 as z ranges in {1,2, . . . ,n−1 = 49}.

infected individual. In general, Tz is the duration of time when there are z infected in-
dividuals and is the length of the transmission tree when there are z branches, where
z ∈ [n−1]. The transition rate λ z× (n− z) increases and the expected branch-length
E(Tz) = 1/(λ z× (n− z)) decreases at the z-th infection event as z increases to n/2.
The expected branch-length is smallest at 4/(λn2) when z = n/2 and then starts in-
creasing to 1/(λ (n− 1)) as z→ n− 1 when all n individuals are infected. This is
shown as a “bath-tub” curve in Fig. 5. This means that the branch length of the tree
at the z-th transmission step, which gives the duration of continuous time taken for
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Fig. 6 The sampling distribution of Tz, branch-lengths (times in y-axis) of the transmission tree when
there are exactly z infected individuals or between the (z− 1)-th and z-th infection event (x-axis), where
z ∈ {1,2, . . . ,n− 1}, from 500 independent simulations of the transmission tree over the complete SI
contact network for a population of size n = 50 (as box plots) and the median branch-lengths given by
E(Tz) log2 = (λ z(n− z))−1 log2, with λ = 1/(n−1) (as red solid line).

the z-th infection event, will have mean length 1/(λ z× (n− z)), such that any one
of the k infected leaf nodes can branch with uniform probability 1/z at equal rate
λ (n− z) to infect one of the (n− z) susceptible (and yet uninfected) individuals with
uniform probability 1/(n− z). The sampling distribution of branch-lengths between
consecutive infection events from 500 independent simulations of the transmission
tree is shown in Fig. 6 and two typical transmission trees with branch-lengths and
topologies over the complete SI contact network for a population of size n = 50 is
shown in Fig. 7.

Furthermore, by rescaling time in units of population size with λ = 1/(n−1), the
time of the z-th infection event, Tz, is independent exponential random variable with
rate z(n− z)/(n− 1) and satisfies the following randomly-shifted-logistic-limit (see
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for eg. (Aldous, 2013, Eq. 7.13)):

Tbunc− logn d→ F−1(u)+G, 0 < u < 1,

where, F is the logistic function:

F(t) =
exp(t)

1+ exp(t)
, −∞ < t < ∞

and G has Gumbel distribution with Pr(G < x) = exp(e−x).
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Fig. 7 Two of the 500 independent simulations of the (unlabelled) transmission tree with branch-lengths
over the complete SI contact network for a population of size 50 from Fig. 6. Notice the variation in
branch-lengths (times between infection events) at the start and end of the epidemic when the variance is
largest.

The expected branch-length E(Tz), as a function of z ∈ {1,2, . . . ,n− 1}, when
the SI contact network is the star network (?n) or the path network (pn), is inversely
proportional to (n− z) or independent of z and n with E(Tz) equalling 1/(λ (n− z))
or 1/λ , respectively, as depicted in Fig. 5.

3 A biparametric Beta-splitting transmission process

We gave a non-parametric description of the transmission process for arbitrary con-
tact networks in the previous section. This Markov construction over the state space
of SI contact networks and transmission trees can be too detailed. Often, one does
not have knowledge of the state space at this detailed resolution so it is useful to con-
struct transmission processes without explicitly tracking the underlying SI contact
network. Here, we give a parametric construction for such a process, by integrating
over a Beta-splitting family of transmission trees with interval-labelled leaves, that
captures the three Examples in Sects. 2.1.1, 2.1.2 and 2.1.3 as special cases.
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The biparametric Beta-splitting model is described in Sainudiin and Veber (2015)
for evolutionary trees. We adapt that construction here for transmission trees. To
match the standard definition of the Beta distribution, for any α,β > 0 we call
B(α,β ) the distribution on [0,1] with density B(α,β )−1xα−1(1− x)β−1, where

B(α,β ) :=
∫ 1

0
xα−1(1− x)β−1dx. (3.1)

If α = β , this distribution is symmetric: if X ∼ B(β ,β ), then 1− X ∼ B(β ,β ).
We call B(α + 1,β + 1) as the Beta-splitting density (for α,β > −1), with density
proportional to xα(1−x)β . This parametric choice corresponds to that used by Aldous
(2001) for the symmetric case with α = β .

We fix α,β > −1. Let (B1,B2, . . .) be a sequence of independent and identi-
cally distributed (i.i.d.) random variables, with the B(α +1,β +1) distribution. Let
(U1,U2, . . .) be a sequence of i.i.d. random variables with the uniform distribution on
[0,1] that is independent of (B1,B2, . . .). Thus, each of these variables takes its values
in [0,1]. We call (Gz = (Uz,Bz))z∈N the generating sequence for the Beta-splitting
trees. It will be the basis of an incremental construction of transmission tree as a
labelled ranked planar binary tree with k leaves and k−1 internal nodes.

Our core idea relies on decomposing the transmission tree construction into two
stages: (1) constructing a random transmission tree without infector-infectee leaf la-
bels such that it biparametrically captures an essential aspect of the underlying SI
contact network’s structure and (2) labelling the leaf nodes with infected individuals
from In for each transmission or splitting event from stage (1). Stage (2) is optional
and the construction of transmission trees without leaf labels from In can be obtained
just from stage (1) — such leaf-unlabelled transmission trees can still provide useful
prior distributions for integration during inference with partial observations.

Stage (1) of the transmission tree construction involves a deterministic mapping
followed by an integration. We first describe the deterministic mapping that takes a
realization of the generating sequence (Gz)z∈N and turns it into a Beta-splitting tree,
i.e. a planar binary tree in which the internal nodes are ranked with integer labels
and the leaves are labelled by subintervals that partition [0,1]. We then describe an
integration over (α,β )-specific random partitions by such sub-intervals.

As we shall see below, the integer labels of the internal nodes will give the order in
which these nodes have been split during the construction, i.e., the order of infections
or successful transmissions. The interval labels of the leaves will form a partition
of the interval [0,1] and will be used to decide which leaf is split and becomes an
internal node in the next step. The left and right leaf nodes resulting from a split
stand for the infector and infectee in the underlying (unobserved) SI contact network
after the infection event.

Let (gz = (uz,bz))z∈N be a realization of the generating sequence. The organizing
map O(g) proceeds incrementally as follows, until the tree created has k internal
nodes and k + 1 leaves. We start with a single root node, labelled by the interval
[0,1].

– Step 1: Split the root into a left leaf with interval label [0,b1] and a right leaf
labelled by [b1,1]. Change the label of the root to the integer 1.
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– Step 2: If u2 ∈ [0,b1], split the left child node of the root into a left leaf and a right
leaf labelled by [0,b1b2] and [b1b2,b1], respectively. If u2 ∈ [b1,1], then instead
split the right child node of the root into left and right leaves with respective
labels [b1,b1 +(1− b1)b2] and [b1 +(1− b1)b2,1]. Label the former leaf that is
split during this step by 2.

– Step z: Find the leaf whose label [a,b] contains uz. Change its label to the integer
z and split it into a left leaf with label [a,a+(b−a)bz] and a right leaf with label
[a+(b−a)bz,b].

– Stop at the end of Step k.

In words, at each step z, the interval labels of the leaves form a partition of the
interval [0,1]. We find the next leaf node to be split by checking which leaf interval
contains the corresponding uz and then bz is used to split the interval of that former
leaf, say with interval width d, into two intervals of lengths bzd and (1−bz)d. Thus,
the width of the left interval of a current leaf node that is about to be split should be
constructed by the Beta-splitting density such that it is proportional to all infection
events that will subtend from the current infector and its future infectees after this
infection event. Similarly, the width of the right leaf label of this current leaf node
should be such that it is proportional to all infection events that will subtend from the
current infectee and its future infectees. Intuitively, one can think of the width of the
interval label of a leaf node as the infection potential of the individual associated with
that leaf and the widths of the left and right interval labels upon a split or an infection
event as the infection potentials of the infector and the infectee, respectively, after
the event. Thus, the beta-splitting trees capture the essence of transmission trees that
are co-evolving with underlying SI contact networks, without explicitly requiring
complete knowledge of the networks during their construction. The internal node
just created is then labelled by z to record the order of the splits. At the end of step
z, the tree has z+ 1 leaves, and so we stop the procedure at step k to ensure k + 1
leaves, where 1≤ k ≤ n−1. Figure 8 shows an example of such a Beta-splitting tree
construction for k = 3.

After the Beta-splitting construction, we first integrate over (Gz)z∈N to ‘erase’
the interval-valued leaf labels and then assign infected individuals in In as leaf labels
to obtain transmission trees from integrated Beta-splitting trees. These trees have
k integer-labelled internal nodes or splits and k + 1 unlabelled leaves. The process
of assigning leaf labels from In via a pre-order traversal on the k internal nodes, in
increasing order, i.e., Stage (2) of the construction, is described next.

We start with the internal node labelled 1 and assign the initial infected individ-
ual ıi(0) to its left node. Then we assign the first infectee to the right node of 1. In
general, as we descend down the internal nodes of the integrated beta-splitting tree in
increasing order of its integer labels we slide the individual label ı` to the left of the
split and assign a new label to the right node as the infectee ı j chosen according to
the infectee distribution for ı`:

ı j ∼ {Pr{ı`
z
 ı j} : ı j ∈ In} , (3.2)

the probability that ı` infects ı j at discrete time-step z. This distribution is defined
to be generic on purpose, without necessarily making explicit reference to c(z), the
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Fig. 8 An example of a Beta-splitting tree construction for k = 3.

underlying SI contact network at time z, that is typically unknown or partially known.
We can always obtain specific form for Eq. (3.2) by making explicit assumptions on
c(z) via the infector-specific infectee distribution within Eq. (2.1):

{Pr{ı`
z+1
 ı j} : ı j ∈ In}=


w(ı`,ı j ;c(z))

∑

∀ı j∈In:
s j(z)=1

w(ı`,ı j ;c(z))
if (τ(z),c(z))≺ (τ(z+1),c(z+1))

0 otherwise.
(3.3)

3.1 Probability of a given Beta-splitting transmission tree

For a given (unlabelled) ranked planar tree, and an internal node labelled by i, let us
write nL

i (resp., nR
i ) for the number of internal nodes in the left (resp., right) subtree

below node i. In particular, if node i subtends two leaves, then nL
i = 0 = nR

i .

Theorem 1 The probability of any discrete transmission tree τ(k) with k splits and
k+1 leaves under the integrated Beta-splitting model is:

Pr{τ(k)}=
k

∏
z=1

{
1

B(α +1,β +1)

∫ 1

0
bnL

z +α

z (1−bz)
nR

z +β dbz

}
×Pr(leaf labels)

=
k

∏
z=1

B(nL
z +α +1,nR

z +β +1)
B(α +1,β +1)

×Pr{ıi(0)}
k

∏
z=1

Pr{(L(z);τ(z)) z−1
 (R(z);τ(z))}, (3.4)

where B(α,β ) was defined in Eq. (3.1).



The Transmission Process 19

Proof outline. The second term in the product is due to the independent assignment
of infected individual according to Eq. (3.2) as we recursively descend through the
infection events encoded by the ranked internal nodes of the tree after the initial
infection with Pr{ıi(0)}. We now focus on the first term which results from integrating
over the (Uz,Bz)z∈[k], for 1 ≤ k ≤ n− 1. Remember that if a leaf is labelled by an
interval [a,b], the probability that it is split during the z-th step is b−a, the probability
that the uniform random variable Uz falls within [a,b]⊂ [0,1]. If it is chosen to split,
it is given label z and the left and right leaves created are labelled by intervals of
respective lengths Bz(b−a) and (1−Bz)(b−a). Then these intervals may split later,
but into intervals of lengths that are always proportional to Bz or 1−Bz (respectively).
Now the probability of the tree τ is the product of the k probabilities of choosing a
given leaf to split at each step, each of which is equal to the length of the interval
labeling that leaf. As a consequence, each split occurring in the left subtree below
node z brings in another Bz in the product, or another 1−Bz if the split occurs in the
right subtree below node z. Averaging over the possible values of the Bz’s, which are
independent B(α +1,β +1) random variables, yields the result. 2

3.2 Examples

Now we reconsider the three specific SI contact networks and show that they arise
for specific values of α and β .

Recall that B(α,β ) is related to the Gamma function Γ by the equality

B(α,β ) =
Γ (α)Γ (β )

Γ (α +β )
, α,β > 0, (3.5)

and that Γ (β ) = (β −1)! = (β −1)(β −2) · · ·2 ·1 if β ∈ N.

3.2.1 Complete network underlies Beta-splitting transmission trees with α = β = 0

Let us assume that the initial infection is uniformly distributed in In and that the
SICN is the complete contact network kn with unit weights as in Sect. 2.1.1 and show
that the probability of the discrete transmission tree after k infections has the same
probability as Eq. (2.5).

The first term in Eq. (3.4) with α = β = 0, simplifies as follows:

k

∏
z=1

B(nL
z +1,nR

z +1)
B(1,1)

=
k

∏
z=1

nL
z !nR

z !
(nL

z +nR
z +1)!

=
1
k!
, (3.6)

where the second equality is obtained by observing that nL
z +nR

z +1 is the number of
internal nodes of the tree rooted at node z, which is the left or the right subtree below
the internal node z. Hence, each term nL

z ! in the numerator of the product cancels
with the term in the denominator that corresponds to the left child node of z, except if
nL

z = 0 and the left child node of z is a leaf. But in this case, 0! = 1 by convention. The
same holds true for each of the nR

z !. Likewise, the terms in the denominator which are
not compensated by some term in the numerator are those corresponding to internal
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nodes having no ancestral nodes. But the only such node is the root (z = 1) with
nL

1 +nR
1 +1 = k. This gives us the result.

From Eq. (3.3), the infectee probability is uniformly distributed over n− z in-
fectees for each infector at time-step z and thus the second term in Eq. (3.4) simplifies
to:

Pr{ıi(0)}
k

∏
z=1

Pr{(L(z);τ(z)) z−1
 (R(z);τ(z))}= 1

n

k

∏
z=1

1
n− z

=
(n− k−1)!

n!
(3.7)

Finally, putting Equations (3.6) and (3.7) into Eq. (3.4), we get the desired identity
with Eq. (2.5). Since the probabilities of the discrete transmission trees are identical
between the integrated Beta-splitting trees with α = β = 0 and the construction of
Sect. 2.1.1 with an explicit complete SI contact network, the continuous-time pro-
cess will also be identical to Eq. (2.4) due to independent Exponential rates for the
infection events.

Remark 2 The transmission tree thus constructed with α = β = 0 corresponds to
Yule (1924) model for evolutionary trees (ignoring planarity and leaf labels). This
Beta-splitting construction is very different from the standard evolutionary construc-
tion of the Yule tree, in which the next leaf to split is chosen uniformly at random
from among the current set of leaves. Here the choice of the next split is dictated
by the lengths of the intervals labeling the current leaves, which will all be distinct
will probability one. However, by averaging over the law of the generating sequence
(when α = β = 0) yields the same uniform distribution on rooted ranked planar bi-
nary trees with k splits and k+ 1 unlabelled leaves. These k! many trees are in bi-
jective correspondence with permutations of {1, . . . ,k} through the increasing binary
tree-lifting operation (Flajolet and Sedgewick, 2009, Ex 17, p. 132).

3.2.2 Star network underlies Beta-splitting transmission trees with α → ∞,β →−1

To obtain a left-branching comb we let (α,β ) approach the limiting bottom-right
corner (∞,−1) of the parameter space. As α → ∞ from the left and β →−1 from
above, the B(α +1,β +1) distribution concentrates on the boundary of the support
at 1. In the limit, each random variable Bz in the generating sequence takes the value
1, with probability 1. Thus, the root is first split into a left leaf with label [0,1] and
a right leaf with label {1} (i.e., an interval reduced to a single point 1). Next, the
uniform random variable U2 belongs to the interval [0,1] with probability one, so that
the left leaf labelled by [0,1] is necessarily that chosen to split next. Again, it is split
into two leaves with left leaf label [0,1] and right leaf label {1}, implying that the next
leaf to split is again the left one which inherited the full interval [0,1] with probability
one. This recursive reasoning can be carried on until step k with k+1 leaves. Hence,
morally the tree corresponding to α→∞ and β →−1 is a fully unbalanced tree, with
a left-branching comb with k+1 leaves. See Fig. 9 for an example with k = 3. Recall
that this is exactly the transmission tree obtained when the underlying SICN is the
star network of Sect. 2.1.2.

For Stage (2) of the construction where we assign leaf labels to the integrated
Beta-splitting tree we assume that the underlying SICN is the star network initialized
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Fig. 9 (a) The discrete transmission tree corresponding to the limiting case α → ∞ and β → −1 is a
left-branching comb, and (b) the discrete transmission tree corresponding to the limiting case β → ∞ and
α →−1 is a right-branching comb.

at the source node. Since there is only one discrete transmission tree topology, i.e.,
the left-branching comb, we can label the leaves of the integrated Beta-splitting tree
in ∏

k
z=1
( 1

n−z

)
many ways to obtain the same probability in Eq. (2.9) for the discrete

transmission tree with individuals leaf labels from In.

3.2.3 Path network underlies Beta-splitting transmission trees with α →−1,β → ∞

By an analogous argument to that in Sect. 3.2.2 with β → ∞ and α → −1, the
B(α + 1,β + 1) distribution concentrates on the boundary of the support at 0 and
each random variable Bz in the generating sequence takes the value 0, with prob-
ability 1. Thus, the only discrete transmission tree topology for the Beta-splitting
tree with (α,β )→ (−1,∞), the limiting top-left corner of the parameter space, is
the right-branching comb shown in Fig. 9 (b), the same one obtained by assuming
that the underlying SICN is the path network in Sect. 2.1.3. By further assuming
that the underlying SICN is the path network for the leaf-labelling Stage (2) with the
initial infection spreading from the individual ı↪→ at the beginning of the path as in
Sect. 2.1.3, we obtain exactly one possible labelling and obtain the same probability
in Eq. (2.13).

3.3 A family of contact networks interpolating the star, complete and path networks

In the previous three sections we saw that the distribution on discrete transmission
trees generated by the the beta-splitting model with (α,β ) taking (limiting) values
(∞,−1), (0,0), and (−1,∞) corresponds to that under ?n (the star SICN), kn (the com-
plete SICN) and pn (the path SICN), respectively. Since these three specific SICNs
seem to be isolated instances of all possible SICNs, we next show that other SICNs
that sequentially interpolate between ?n, kn and pn can be constructed such that their
transmission tree distributions correspond to that under the Beta-splitting model with
(α,β ) values that also sequentially interpolate between (∞,−1), (0,0) and (−1,∞).

In order to find the (α,β ) values that correspond to an arbitrary SICN, we use
the following inferential procedure. First we generate a sample of r independent
transmission trees (τ1,τ2, . . . ,τr) from the given SICN C and initial infected indi-
vidual initialI by calling transmissionProcessTC(C,initialI) in Sect. A.1
r times. Then we compute (α̂, β̂ ), the maximum likelihood estimate (MLE) of the
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parameters by maximizing the likelihood function as follows:

(α̂, β̂ ) = argmax
(α,β )∈(−1,∞)×(−1,∞)

r

∏
i=1

Pr(τi;α,β ) .

The probability of the tree τi for a given (α,β ), Pr(τi;α,β ), is obtained from a post-
order traversal of τi to compute the first term in Eq. (3.4). To focus on the jump
chain’s discrete structural information in the transmission trees, our likelihood of the
transmission tree ignores leaf labels and the waiting times between events as imple-
mented in Sect. A.2 (such additional information can be included in more elaborate
likelihood functions). The demonstration at the end of Sect. A.2 shows two indepen-
dent MLE computations based on r = 10 independent transmission trees (without leaf
labels) that were sampled from the complete SICN on n = 50 nodes. As expected the
MLE (α̂, β̂ ) takes the following values: (0.0121,−0.0841) and (−0.0406,−0.0379).
As expected, these are close to (α,β ) = (0,0), the parameters of the Beta-splitting
model corresponding to the transmission tree distribution generated from the com-
plete SICN. The variability in MLE is expected due to natural sampling variability.
Now that we have an inferential procedure to consistently estimate the (α,β ) param-
eters of the best-fitting (most likely) beta-splitting transmission process from a set of
transmission trees generated from the transmission process on any given SICN, we
are ready to present a family of SICNs that interpolate our three extreme SICNs.

A circulant network or digraph on n vertices labelled by V = {0,1, . . . ,n− 1} is
specified by a set A ⊂ V, such that there is an directed edge from vertex i to vertex
j if and only if ( j− i) mod n is an element of A. We denote a circulant digraph on n
vertices with edge-specifying set A by C (n,A). First note that C (n,{1,2, . . . ,n−1})
is the complete network kn and C (n,{d}) has constant degree sequence with degree
d since each node i is connected to d neighbours in { j : ( j− i) mod n ∈ {k}}.

The transmission process on the linear path network pn is identical to that on
the circular path network C (n,{1}) when the infection starts at vertex 0 (at the head
of pn) since the extra directed edge (n− 1,0) in C (n,{1}) plays no role in the SI
model due to vertex 0 already being infected. Thus, we do not distinguish between
the circular path and linear path in the sequel. By letting Ai = {1,2, . . . , i} we get
the sequence of circulant graphs to interpolate from the path network to the complete
network:

(C (n,Ai))
n−1
i=1 = (C (n,{1}),C (n,{1,2}),C (n,{1,2, . . . ,n−1}))

This sequence is shown for n = 5 in the bottom row of Fig. 10 (going from right
to left). To achieve an interpolating sequence from the star network to the complete
graph we note that C (n, /0) has no edges. By letting A0 = /0, we can obtain the desired
sequence by simply adding the edges of the star network, {(0, i) : i ∈ {1,2, . . . ,n}, to
the edge set of each C (n,Ai) in (C (n,Ai))

n−2
i=0 , as shown in the top row of Fig. 10 for

n = 5. Putting this sequence of networks between ?n and kn and the other between kn
and pn we get a total of 2n−2 networks (including ?n, kn and pn). This sequence can
be generated for any n using the function star2Complete2Path(n) in Sect. A.3.

We can finally see in Fig. 11 how the probability density function of the MLEs,
(α̂, β̂ ), change as we sequentially vary the SICN in the family that interpolates from
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Fig. 10 A path from star network to circular path network through the complete network with 5 vertices.

the star network (red hue) to the circular path network (pink hue) via the complete
network (blue hue). The MLEs is based on 10 independent transmission trees simu-
lated from each SICN in the sequence of 98 SICNs over a population of size n = 50.
In Fig. 11, the hue of the PDFs sequentially change from red which is concentrated
entirely on the boundary at 1 (star network), to orange and yellow which are decreas-
ing their concentration at 1 due to disappearance of the star’s signal from the larger
neighbourhoods of the circulant graphs C (n,Ai). As i approaches n−1 the green and
azure hues of the PDFs become increasingly uniform around blue when the SICN is
the complete network. The hue of the PDFs become purple and start concentrating
at 0 as the SICN approaches the path network that is fully concentrated at 0 (pink
hue). The pattern of the PDFs is stochastic since it is based on MLEs from just 10
samples. However, it clearly demonstrates that the interpolating sequence in the space
of SICNs does convey continuity in the parameter space of (α,β ). In other words,
this suggests that there is an (α,β ) under the beta-splitting model (recall that the
beta-splitting model need not explicitly refer to the contact network), that best fits the
distribution of transmission trees generated from any specific contact network.

4 Discussion

We give a probabilistic description of the transmission process in Sect. 2 as a Markov
chain on the product space of SI-tagged contact networks and transmission trees in
discrete and continuous time. The Markov chain is also constructed as a randomized
algorithm in the SageMath/Python code in Sect. A.1. This formalizes a large class of
simulation programs in the computational epidemiology literature as a transmission
process. The probabilities of transmission trees as an explicit function of both branch-
lengths and tree topologies are derived in Sect. 2.1 from the general Markov chains
of Eqs. (2.1) and (2.2) for some simple static contact networks.

Although the Markov chain model is general and only needs a directed weighted
graph, our examples were limited to simple connected networks. It is straightforward
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Fig. 11 Probability density function (PDF) of the B(α +1,β +1) distribution at the maximum likelihood
estimates of α and β ) based on 10 sampled transmission trees from each SICN in the sequential family
that interpolates from the star network (red hue) to the circular path network (pink hue) via the complete
network (blue hue) with n = 50 nodes. The hue of the PDFs sequentially change from red (star network),
orange, yellow and green (complete network) as shown on the top plot and continue on with azure, blue,
purple, to pink (path network) as shown in the bottom plot.

to consider the dynamics on more general networks using the richer language for
digraphs (Pastor-Satorras et al, 2015, Fig. 4). For example, the epidemic will spread
to the strongly connected giant component (if it exists) and the giant out-component,
provided the infection starts from one of the nodes in either the strongly connected
giant component or in a giant in-component.

We develop a biparametric Beta-splitting family of models for the growth of trans-
mission trees via pure birth events in Sect. 3 that gives the exact probability of any
transmission tree as a function of α >−1 and β >−1. The approach avoids the ex-
plicit modeling of the underlying contact network (that is typically unobserved) in or-
der to grow transmission trees, unlike the general Markov chain models of Eqs. (2.1)
and (2.2). The Beta-splitting family of models is show analytically to contain the
models generated by the complete network (kn) when (α,β ) equals (0,0), star net-
work (?n) when (α,β )→ (∞,−1) and path network (pn) when (α,β )→ (−1,∞).
We also derive explicit expressions for maximum likelihood estimators for the Beta-
splitting model from independent observations of the transmission trees (which can
be extended to the case of samples of several smaller transmission trees). Finally, the
model can be interpreted in terms of a Beta-splitting construction for the “infection
potential” of the infector and the infectee. Thus, the model captures aspects of the un-
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derlying contact network up to how its contact structure affects the infection potential
of the infector and infectee after the infection event.

We have also shown by simulations coupled with an inferential maximum likeli-
hood procedure that the best-fitting parameters for a sequential family of SI-tagged
contact networks from ?n to kn to pn do indeed follow a path in (−1,∞)2, the parame-
ter space, from (∞,−1) to (0,0) to (−1,∞). We conjecture that there is an equivalence
class of SI-tagged contact networks that are indistinguishable by their transmission
tree distributions for some given (α,β ) ∈ (−1,∞)2. As a trivial example we already
saw that the circular and linear path networks have identical transmission tree distri-
butions. Let L̂(w) = (α,β ) : Sn→ (−1,∞)2 map each (connected) contact network
w in Sn to the exact maximum likelihood estimate (α,β ), i.e., L̂(w) transforms the
distribution on transmission trees induced by w to the MLE (α,β ) in the param-
eter space over the quarter plane (−1,∞)2. Sn is the poset under subset ordering
of the connected elements of 2wn , the power set of the edge set wn of kn, the com-
plete network with unit edge-weights. We can use L̂(w) to map each contact network
w ∈Sn to its MLE in (−1,∞)2 while maintaining the partial ordering between con-
tact networks. Such a planar geometric embedding of the contact networks into the
quarter-plane can help one gain a more systematic understanding of the connection
between the transmission tree distributions specified by the beta-splitting model and
that specified directly by the contact network.

Although random graph models of contact networks add another level of random-
ness, we can informally think of a static contact network as a typical realization of
a random graph model (Aldous, 2013, Sec. 2.5). Thus the transmission process on
any given static contact network can be used to provide insights into the sampling
distribution of transmission trees for a large class of random graph models already
available in SageMath’s graph libraries. For example, the following code:

ts=[transmissionProcessTC(graphs.RandomRegular(k,n).to_directed(),0)

for _ in range(1000)]

can produce 1000 independent samples of transmission trees from 1000 independent
realizations of the random k-regular graph over n nodes.

The jump Markov chain of the transmission process on static SI-tagged contact
networks is a prerequisite for contemplating appropriate partial orders on the set of
all SI-tagged contact networks in order to define natural transitions in the state space
that can allow for contact networks to vary in time by possibly depending on the cur-
rent state of the tagged contact network as well as the transmission tree – a natural
state space for formalizing epidemics over adaptive or coevolving contact networks.
Such adaptive contact networks are known in simulation studies to be highly sensi-
tive to the structure of the initial contact network (see Pastor-Satorras et al (2015,
VII.B.7) and the references therein). Future research on Markov chains with transi-
tions over partially ordered contact networks (that could be geometrically embedded
in the quarter-plane by their Beta-splitting MLEs as described above) as well as trans-
mission trees could build upon insights from this simpler setting of transitions over
static SI-tagged contact networks and partially ordered transmission trees.

We hope that tractable extensions of the transmission process from this most basic
and fundamental setting of the SI model will be pursued in the future. By considering
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birth and death processes, as opposed to a pure birth process, we can make progress
on developing transmission processes for the more complex SIS epidemic model that
not only allows susceptible individuals to become infected by any infected individual
at a given ‘birth’ rate but also allows infected individuals to become susceptible again
according to a given ‘death’ rate. Extensions to SIR model which allows for the ‘re-
moval’ of infected individuals from the population at a given rate is conceivable via
mapping to percolation on semi-directed networks (see Pastor-Satorras et al (2015,
V.B.4) and the references therein).

We only looked at the resolution of leaf-labeled and leaf-unlabeled transmission
trees with and without branch-lengths in this work. Transmission trees are rooted,
binary, ranked, and planar. Fortunately, it is straightforward to carry over these prob-
abilities to planar unranked trees, nonplanar ranked trees and nonplanar unranked
trees using the explicit formulae and code in Sainudiin and Veber (2015). These for-
mulae can be used to conduct simulation intensive inference based on projections of
the transmission trees onto coarser tree shape statistics or used as prior distributions
to constrain the micro-structure of the continuum of contacting hosts in space-time
within which the pathogens can evolve through transmission events.
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A Code

This code is publicly shared in sagemathcloud at https://cloud.sagemath.com/projects/58dfa924-
55ae-4b6c-9fd4-1cd0ef49eb7c/files/2015-10-25-165503.sagews. The code was mainly used
to aid intuition during this study and is not written to be efficient for large scale simulation studies. The
code is presented here instead of pseudo-code in order to communicate the Algorithms used in this study
in a more concrete and reproducible manner. This also allows the reader to perform computational experi-
ments in sage/Python immediately to further extend this work.

A.1 Simulating the Transmission Process

LBT = LabelledBinaryTree

def markAsInfected(C,v,m):
’’’mark node v as infected with marker m on each of the incoming edges of v in SICN C’’’
for e in C.incoming_edge_iterator([v]):

C.set_edge_label(e[0],e[1],m)

def susceptibleOutEdges(C,vs):
’’’return the the susceptible outedges of node v in vs in SICN C’’’
SOE = [e for e in C.outgoing_edge_iterator(vs) if e[2]==None]
return SOE

def growTransmissionTree(Ttree, pDict, z, infector, infectee):
’’’grow the transmission tree Ttree and update pathsDict pDict by adding the

z-th infection event with infector -> infectee ’’’
newSubTree = LBT([LBT([None,None], label=infector),

LBT([None, None], label=infectee)], label=z).clone()
path2Infector = pDict[infector]
if z==1:

Ttree = newSubTree
else:

Ttree[tuple(path2Infector)] =newSubTree
pDict[infector]=path2Infector+[0]
pDict[infectee]=path2Infector+[1]
pDict[z]=path2Infector
return Ttree

def forgetLeafLabels(T):
’’’return the transmission tree T with all leaf labels set to 0’’’
leafLabelSet=set(T.leaf_labels())
leafUnlabelledT=T.map_labels(lambda z:0 if (z in leafLabelSet) else z)
return leafUnlabelledT

def forgetAllLabels(T):
’’’return the transmission tree T with all node labels removed’’’
return T.shape()

def justTree(T):
’’’return the transmission tree T as nonplanar unranked unlabelled tree’’’
return Graph(T.shape().to_undirected_graph(),immutable=True)

def transmissionProcessTC(C,initialI):
’’’return transmission tree outcome of the DTDS transmission MC on SICN C with

initial infection at node initialI’’’
#initialisation of SICN
z=0 # infection event count
ExpectedTimes=[] # vector of expected waiting times
markAsInfected(C,initialI,’infected’)
infectedIs = [initialI]
popSize=C.order()
# initialisation of Transmission Tree
pathsDict={} # dictionary of nodes -> paths from root in tree
# individuals in tree are labelled by "i"+str(integer_label)

https://cloud.sagemath.com/projects/58dfa924-55ae-4b6c-9fd4-1cd0ef49eb7c/files/2015-10-25-165503.sagews
https://cloud.sagemath.com/projects/58dfa924-55ae-4b6c-9fd4-1cd0ef49eb7c/files/2015-10-25-165503.sagews
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T = LBT([None,None],label="i"+str(initialI)).clone()
pathsDict["i"+str(initialI)]=[]
while (len(infectedIs) < popSize):

z=z+1 # increment infection event count
currentSOE = susceptibleOutEdges(C,infectedIs)
ExpectedTimes.append(1/len(currentSOE))
nextEdge = currentSOE[randrange(0,len(currentSOE))]
C.set_edge_label(nextEdge[0],nextEdge[1],z)
infectedIs.append(nextEdge[1])
markAsInfected(C,nextEdge[1],’inf’)
T=growTransmissionTree(T, pathsDict, z, "i"+str(nextEdge[0]),"i"+str(nextEdge[1]))
print "step z = ",z; print ascii_art(T); print "--------------------"

return [T.as_ordered_tree(with_leaves=False), ExpectedTimes]

# demo
sage: transmissionProcessTC(graphs.CompleteGraph(4).to_directed(),0)
# output
step z = 1

1_
/ \

i0 i3
--------------------
step z = 2

__1__
/ \

2_ i3
/ \

i0 i1
--------------------
step z = 3

___1___
/ \

2_ 3_
/ \ / \

i0 i1 i3 i2
--------------------
[1[2[i0[], i1[]], 3[i3[], i2[]]], [1/3, 1/4, 1/3]]

A.2 Likelihood of Beta-splitting Transmission Trees

def splitsSequence(T):
’’’return a list of tuples (left,right) split sizes at each split node’’’
l = []
LabelledBinaryTree(T).post_order_traversal(lambda node:

l.append((node[0].node_number(),node[1].node_number())))
return l

def prob_RPT(T,a,b):
’’’probability of ranked planar tree T under beta-splitting model

a,b>-1, where (a+1,b+1) are the parameters of the beta distribution’’’
return prod(map(lambda x: beta(x[0]+a+1,x[1]+b+1)/beta(a+1,b+1),

splitsSequence(T)))

# demo of the mle for a complete graph with 50 nodes and 10 sampled trees
c_1 = lambda p: p[0]+0.9999999 # constraint for alpha > -1
c_2 = lambda p: p[1]+0.9999999 # constraint for beta > -1
n=50
reps=10
ts=[transmissionProcessTC(graphs.CompleteGraph(n).to_directed(),0) for _ in range(reps)]
def negLkl(AB):

return sum([-log(1.0*prob_RPT(ts[j],AB[0],AB[1])) for j in range(reps)])
mle=minimize_constrained(negLkl,[c_1,c_2],[0.0,0.0],disp=0)
[n,reps,mle]

[50, 10, (0.012116930598591959, -0.08408627968100374)]
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# another execution of the above demo block to show variability in MLE
[50, 10, (-0.04056211875882902, -0.03788115149950636)]

A.3 A family of contact networks interpolating the star, complete and path networks

def star2Complete2Path(n):
’’’list of digraphs from star to complete to circular path with n vertices’’’
connects=[]
for i in range(1,n+1):

connects.append(range(1,i))
L=[]
for i in range(0,n):

g=digraphs.Circulant(n,connects[i])
g.add_edges([(0,i) for i in range(n)])
L.append(g)

for i in range(n-2,0,-1):
g=digraphs.Circulant(n,connects[i])
L.append(g)

return L

A.4 Transmission Tree Distributions

See (Sainudiin and Veber, 2015, Appendix: Algorithms) for simulating transmission trees and obtaining
the probability for various equivalence classes of trees under the Beta-splitting model.
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