
Example: Abrasion Resistance Matrix Plot Code

◮ Code assumes data read in one matrix called data

◮ One column per variable (response first)

◮ Matrix is simple to produce in MATLAB:

>> % Assumes all data is read in as a matrix

>> plotmatrix(data)

>> title(’Matrix plot of Abrasion Loss, Hardness and

Tensile Strength’)

◮ Only issue: Painful to put axis labels on the plot

◮ Workaround: put them in title (in right order)

Example: Abrasion Resistance Matrix Plot

Example: Abrasion Resistance Matrix Plot Features

◮ Upper and lower triangles are mirror image of each other

◮ If response is first, then first row gives first indication of
association between response and explanatory variables

◮ Other plots in upper triangle summarise associations between
the explanatory variables

◮ Histogram on diagonal useful to understand spread of data

◮ Impression for this dataset:
◮ moderate-strong negative linear association between abrasion

losses and hardness
◮ weak negative association between abrasion losses and tensile

strength
◮ weak negative association between hardness and tensile

strength

Matrix Plot General Comments

◮ Matrix plots are excellent for:
◮ examining relationships between pairs of variables;
◮ detecting obvious outliers in one or two variables; and
◮ displaying a large number of variables.

◮ However, it can be difficult to extract higher order
relationships (interactions) between several variables and
outlier in more than two variables.

◮ Other possibilities: glyphplot, andrewsplot or
parallelcoords



Example: Abrasion Resistance Correlation and Regression

◮ Often worthwhile getting correlation matrix:

>> corr(data)

◮ which gives:

◮ Fitting multiple regression model :

>> % extract response vector

>> y=data(:,1);

>> % create design matrix

>> X=[ones(size(data,1),1) data(:,2:end)];

>> % fit regression model

>> [B,BINT,R,RINT,STATS] = regress(y,X);

Example: Abrasion Resistance Regression Results

◮ Multiple coefficient of determination R2 (proportion of
variation in abrasion loss explained by model) obtained from:

>> STATS(1)

◮ which gives R2 = 84%

◮ Regression coefficient vector (B vector) is:

Example: Abrasion Resistance Regression Coefficients

◮ 95% confidence interval for regression coefficients assuming
normally distributed errors given by BINT matrix:

◮ Better to use bootstrapping (observation resampling
appropriate here):

>> % observation resampling (random X)

>> bootbetas = bootstrp(nsim,@(y,x) regress(y,x),y,X);

>> prctile(bootbetas,[2.5 97.5],1)

>> figure;

>> subplot(1,3,1);hist(bootbetas(:,1),100);xlabel(’Intercept’)

>> subplot(1,3,2);hist(bootbetas(:,2),100);xlabel(’Hardness’)

>> subplot(1,3,3);hist(bootbetas(:,3),100);xlabel(’Tensile Strength’)

Example: Abrasion Resistance Bootstrap Coefficients

◮ 95% confidence intervals for regression coefficients using
bootstrapping (does not require normal errors assumptions)

◮ Given by each column of prctile(bootbetas,[2.5 97.5],1):



Hypothesis Testing of Regression Coefficients 1
“state of nature” Don’t Reject H0 Reject H0

H0 : βi = 0 is “true” OK Type I error

H1 : βi 6= 0 is “true” Type II error OK

◮ We want to reject H0 when it is true with a small probability

◮ That is, we want to keep the probability of Type I error
≤ α = 0.05, say

◮ Similarly, we want to minimize type II error as well

◮ There are two ways to do a hypothesis test

◮ 1. Reject H0 if 0 is not inside the (1− α) confidence interval
for βi

◮ 2. Compute p-value – a measure of evidence against H0

“p-value” range evidence

< 0.01 very strong evidence against H0

[0.01, 0.05] strong evidence against H0

[0.05, 0.10] weak evidence against H0

> 0.1 little or no evidence against H0

Hypothesis Testing of Regression Coefficients 2

◮ Suppose we want to carry out hypothesis test of each
coefficient βi being zero:

◮ Null hypothesis H0 : βi = 0
◮ Alternative hypothesis HA : βi 6= 0

◮ Could use above confidence intervals which has double sided
95% confidence:

◮ if zero is included within the interval, then “there is

insufficient evidence at the 95% level to reject the null

hypothesis”
◮ if zero is excluded within the interval, then “there is sufficient

evidence at the 95% level to reject the null hypothesis”

◮ Or you can calculate p-values for single sided tests (depending
on which direction is most relevant):

◮ H0 : βi ≤ 0 and HA : βi > 0 (use for positive β̂i )
◮ H0 : βi ≥ 0 and HA : βi < 0 (use for negative β̂i )

◮ using boostrap simulations of coefficient (see next slide)

Example: Abrasion Resistance Testing Coefficients

◮ MATLAB code for calculating each type of p-value:

>> pnegative=sum(bootbetas>0)/nsim

>> ppositive=sum(bootbetas<0)/nsim

◮ which for this example gives:

◮ i.e. none of the bootstrap simulations were of opposite sign to
OLS estimate in β̂

◮ In practice this means the p-value is less than the reciprocal of
the number of bootstrap simulations

◮ Should be reported as p < 1e − 5 for nsim=100000

Diagnostic Plots for Multiple Regression
Common diagnostics for multiple regression models:

1. residuals against each explanatory variable;

2. residuals against predictions;

3. leave-one-out change in predictions (or coefficients) against
leverages;

4. histogram of residuals;

5. residuals against auxiliary variables (e.g. variables left out of
model, or time); and

◮ Interpretation of (1)-(3) same as for simple linear regression

◮ (4) should look close to normal if you want to use confidence
intervals (or hypothesis testing approaches) based on normal
error distribution assumption

◮ Remember: normality assumption avoided using bootstrap

◮ (5) highlights other predictors, or correlation with errors over
time (thus breaking uncorrelated errors assumption)



Example: Abrasion Resistance Diagnostic Plots

1. Residuals against predictions

Example: Abrasion Resistance Diagnostic Plots

2 Residuals against both explanatory variables

Example: Abrasion Resistance Diagnostic Plots

3 Leave-one-out change in predictions against leverages

Example: Abrasion Resistance Diagnostic Plots

◮ Previous plot suggests an outlier (did you spot it?)
◮ They are often not easy to spot in large multiple regression

problems (shows power of diagnostic plot)
◮ Looking again at the original abrasion loss and tensile strength

data suggest a possible outlier:



Example: Abrasion Resistance Diagnostic Plots

◮ Bootstrapped “Tensile
Strength” coefficients show
effect of outlier

◮ Notice wider spread and possible
second mode (around -1.25)
when using all data

◮ Much less spread (uncertainty)
in coefficient when outlier is
ignored

◮ Bootstrap simulations provide

another useful diagnostic for

influential outliers

Summary of Diagnostic Plots
Summary diagnostic plots to evaluate OLS assumptions:

Assumption Diagnostic Plots Check For

Random and Scatterplot (Matrix plot) No outlying responses
representative Random scatter
of population. Histogram of residuals No outlying residuals
(e.g. no outliers) Leverages against leave-one-out No outliers with high leverage

statistics
Boostrap correlations/coefficients Multimodel behaviour or

large change if outlier ignored

Linearity Residual against explanatory variables No remaining pattern
Constant mean of zero

Constant Variance Residual against explanatory variables Constant spread
Residuals against predicted values Constant spread

Normality Histogram of residuals Normal shape (if assumed)

Uncorrelated Residuals against explanatory variables No clustering of residuals
or time (if relevant)

Model Choice Statistics

◮ Abrasion model has small number of explanatory variables

and it is clear that the models provide an adequate fit

◮ If there are a large number of explanatory variables an
objective procedure is needed to decide how many
explanatory variables (and which ones) need to be included in
the model to provide an “adequate fit”.

◮ Need to outline model choice statistics to assess model
adequacy

◮ If there are a moderate number of potential explanatory

variables: compare the performance of all 2p models (called
the all possible regressions selection procedure)

◮ For large models: methodical algorithms commonly used to
efficiently search for terms to be included in the model

Overfitting

◮ Key principle: model should not overfit the data

◮ An overfitted model has more terms in the model than is
required to provide an “adequate fit” to the data

◮ Consequence of overfitting:
◮ model will perform well on the observed sample of data

used to fit the model
◮ but will perform poorly for predictions on future data

◮ Extrapolation of an overfitted model will also tend provide
very poor predictions

◮ An overfitted model explains the random errors in the sample
data rather than capture the true underlying relationship

◮ Thus future predictions will be poor as the overfitted model
tries to predict the random noise, which will be different in
future observations as it is random!



Parsimony

◮ It is desirable to find the simplest model required for the
application, which is captured by the concept of parsimony:

◮ If two competing models have statistically the same predictive

ability then the parsimonious model is the one with the

smaller number of parameters

All Possible Regressions

◮ Considers models containing all possible combinations of the
explanatory variables

◮ For example, if there are 3 explanatory variables X1,X2 and X3

◮ There are 23 = 8 subsets of the explanatory variables:

1. intercept only
2. X1

3. X2

4. X3

5. X1 and X2

6. X1 and X3

7. X2 and X3

8. all three variables

◮ Lots of summary statistics to evaluate performance

◮ In practice, the choice of the criteria is left upto the modeler

◮ But good practice to make judgement based on many
statistics

Adjusted R2

◮ (Multiple) coefficient of determination R2 always increases (or
at least stays the same) if more explanatory variables are
included in the model.

◮ So useful criteria for model choice

◮ Adjusted R2 statistics overcomes this issue:

R2
adj = 1− (1− R2)

n − 1

n − (p + 1)
(21)

◮ Penalizes models with large numbers of parameters p

◮ Many, many! other statistics

◮ A very general approach is to use cross-validation

Leave-one-out is Cross-validation

◮ We have already met the idea of leave-one-out predictions (or
coefficients) to investigate outliers

◮ The leave-one-out idea can also be used to provide a measure
of the overall model fit, but which penalizes against overfitting

◮ Leave-one-out is just a special case of more general
cross-validation and approach

◮ So far, the sample of data has been used both to:

1. estimate the model, and then
2. assess the model performance.

◮ In some sense, the information contained in the data is being
used twice, which can lead to overoptimistic estimates of

the model performance.

◮ A model that performs well on the original sample may
perform poorly on future predictions



Holdout Method

◮ Simple way to ameliorate this problem, is to randomly split
the entire sample into two non-overlapping subsets:

◮ training set used to fit model
◮ test set used to evaluate performance

◮ Known as the holdout method

◮ Typical ratio is 2:1 in favour of training set

◮ Advantage of this method is that it is less prone to
overestimating the model performance due to overfitting and
does not require any extra computations

◮ However, the regression estimates and performance can have a
high variance, due to the reduced sample size in each subset.

◮ The performance evaluation also depends heavily on split into
training and test sets, particularly for small datasets

◮ Different “runs” will likely give different results!

Cross-Validation

◮ K-fold cross validation improves on holdout method

◮ Dataset is randomly divided into K subsets and the holdout
method is repeated in K trials

◮ In each trial, one of the K subsets is used as the test set and
the other K − 1 subsets are used as the training set

◮ Mean sum of square (MSE) of the errors (or similar
performance measure) across all K test set trials is computed

◮ Every observation is in a test set exactly once, and gets to be
in a training set K − 1 times

◮ Principal advantages are (a) variance of the regression
estimates is reduced as the training sample is larger than in
holdout method and (b) result is less dependent on initial
random allocation to K sets

◮ Principal disadvantages are (a) the extra computations
involved and (b) results can change on each run

◮ Typically 10-fold cross-validation is the default

Leave-one-out Cross-Validation and PRESS

◮ Special case of K -fold cross validation is leave-one-out
cross-validation

◮ i.e. where one observation is left out at a time or n-fold

◮ Same idea is same as leave-one-out concept we met before

◮ Mean sum of square of the errors (MSE) for the leave one
predictions is then calculated

◮ Some computer packages give the total sum of square of
errors instead, which is called the Prediction REsidual Sum of
Squares (PRESS) statistic:

PRESS =
n

∑

i=1

(yi − ŷ−i )
2, (22)

where y−i is the prediction for observation i obtained when
the regression model is estimated with observation i left out

◮ Main advantage is that the results will be same on every run,
as there is no random allocation

Cross-Validation and PRESS Comments

◮ No matter which approach you take, you select the model with
the smallest prediction error (total or mean) sum of squares

◮ PRESS sounds computationally expensive, as you need to fit
the regression model n times to each training set

◮ However, PRESS can be calculated directly from the
regression model estimated using the complete dataset

◮ By adjusting for the influence of each observation (i.e. using
the leverage hii ):

PRESS =
n

∑

i=1

(

yi − ŷi

1− hii

)2

(23)

◮ Hence, the regression model need only be estimated once
using the complete dataset, and PRESS is simply the sum of
square of the residuals corrected for the leverage



MATLAB Implementation of Cross-validation

◮ Thankfully MATLAB implements the tedious cross-validation
process using crossval function

◮ First need to create function handle to fit model to training
data and predict on test data:

>> regf = @(Xtrain, ytrain, Xtest)(Xtest * regress(ytrain,Xtrain))

◮ Then apply cross-validation to dataset:

>> cvMSE = crossval(’mse’,X,y,’predfun’,regf)

◮ MATLAB defaults to 10-fold cross-validation

◮ First input ’mse’ tells crossval function to calculate MSE

◮ Following X and y inputs are design matrix and response
vector, to which cross-validation is to be applied

◮ Last input ’predfun’ sets prediction function handle to regf

Some Explanation of MATLAB Cross-validation Options

◮ If you specify one of ’Kfold’, ’Holdout’ or ’Leaveout’
options to crossval function then default behaviour is
overridden:

>> cvMSE = crossval(’mse’,X,y,’predfun’,regf,’Kfold’,5) % 5-fold

>> cvMSE = crossval(’mse’,X,y,’predfun’,regf,’Holdout’,1/3) % holdout 2:1

>> cvMSE = crossval(’mse’,X,y,’predfun’,regf,’Leaveout’,1) % Leave-one-out

◮ Note: only specify one of these options!

◮ Value of ’Holdout’ as 1/3, specifies the proportion of data
in test set (total number in test set can be specified instead)

◮ Value of ’Leaveout’ can only be 1

◮ crossval has many options, see: help crossval or
doc crossval

Example: Abrasion Resistance Cross-validation

◮ Repeat cross-validation for all model subsets:

>> regf = @(Xtrain, ytrain, Xtest)(Xtest * regress(ytrain,Xtrain))

>> cvMSE = crossval(’mse’,X,y,’predfun’,regf)

>> cvMseNoStrength = crossval(’mse’,X(:,1:2),y,’predfun’,regf)

>> cvMSENoHardness = crossval(’mse’,X(:,[1,3]),y,’predfun’,regf)

◮ which gives:

◮ Adjusted R2 available from regstats function:

◮ Conclusion: all variables needed in model as 10-fold
cross-validation MSE is smallest for this model

Example: Abrasion Resistance Adjusted-R2

◮ Adjusted R2 available from regstats function:

>> regstats(y,data(:,2:end),’linear’,{’adjrsquare’})

◮ Which gives R2
adj = 83% (and 53% for Hardness only model

and 6% for Strength only model)

◮ Overall conclusion: all variables needed in model according to
both 10-fold cross-validation and adjusted-R2 statistics

◮ NOTE: no assumptions about the distribution of the

errors have been required



Comparsion of Nested Models

◮ Two models are nested if the set of variables included in the
simpler model (restricted model) are a subset of those used
in more complex model (unrestricted model)

◮ An ANalysis Of the VAriance (ANOVA) explained by adding
the extra terms into the model enables a statistical test as to
whether they significantly improve the model fit

◮ Consider a restricted model (βk+1 = βk+2 = . . . = βp = 0):

y = β0 + β1x1 + β2x2 + . . .+ βkxk + ǫ. (24)

◮ with (k + 1) terms, and it’s unrestricted form:

y = β0 + β1x1 + β2x2 + . . .+ βkxk + βk+1xk+1 + . . .+ βpxp + ǫ (25)

◮ with (p + 1) terms, where p > k

Hypothesis test for Nested Models

◮ Wish to test the null hypothesis:

H0 : βk+1 = βk+2 = . . . = βp = 0,

◮ against the alternative hypothesis:

H1 : At least one of the coefficients βk+1, βk+2, . . . , βp is nonzero.

◮ It is possible to apply bootstrapping (i.e. using confidence
intervals or p-values) to evaluate the evidence to reject the
null hypothesis based on an appropriate statistic

◮ Unfortunately, applying this in a stepwise algorithm for

model selection is challenging to implement in MATLAB

◮ So we will revert to traditional testing ideas under normality
assumption for errors

F -test Statistic for Nested Models

◮ Denote the Residual Sum of Squares as RSS =
∑

(yi − ŷi )
2

◮ The test statistic is given by:

F =
Explained Variance

Unexplained Variance
=

(RSSk+1 − RSSp+1)/(p − k)

RSSp+1/[n − (p + 1)]

where:

RSSp+1 = RSS of unrestricted model

RSSk+1 = RSS of the restricted model

n = sample size

p + 1 = # of terms in unrestricted model

p − k = # of terms constrained to zero in restricted model.

F -test Statistic Properties

◮ Essentially, the F -test is ratio of the additional variance
explained by the extra terms in the more complex model
(accounting for the degrees of freedom used up when
including them) to that left over in the residuals:

◮ If the extra variables are useful for prediction then they will
“explain more variability on average” than in the random
errors (i.e. F statistic will be large)

◮ If the extra variables are not useful for prediction the they will
“explain little or the same variability on average” than in
random errors (i.e. F statistic will be small)

◮ Notice that the denominator in the F -test statistic is just the
estimated error variance for unrestricted model:

Unexplained Variance = σ̂2
p+1 =

RSSp+1

n − (p + 1)



F -test Statistic Under Normal Assumption

◮ If we assume the errors in the regression model are normally
distributed, in addition to satisfying the usual OLS error
assumptions

◮ Then the F -test statistic is known to follow a particular
distribution under the null hypothesis:

◮ F distribution on v1 = p − k numerator degrees of freedom
and v2 = n − (p + 1) denominator degrees of freedom

◮ The null hypothesis is rejected if the F statistic is within the
rejection region F > Fv1,v2(α) for a 100(1− α)% significance
test

◮ Or equivalently, we reject the null hypothesis if the p-value for
the F statistics is smaller than the significance level

◮ See wikipedia for formal definition of F -distribution - not
expected for this course

F -test Distribution and Rejection Region
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◮ If F statistic calculated for two models is in red region where
F > Fv1,v2(α) then “there is sufficient evidence at the α%
significance level to reject the null hypothesis of zero
coefficients (i.e. extra terms should be included as they
significantly improve model fit)

◮ If F statistic is in blue region where F < Fv1,v2(α) then “there
is insufficient evidence at the α% significance level to reject
the null hypothesis of zero coefficients (i.e. extra terms should
be left out as they do not significantly improve model fit)

F -test Distribution and p-value
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◮ p-value is probability of getting the particular F test statistic
or something more unusual under the null hypothesis (yellow
region)

◮ Reject null hypothesis if p-value for F -test statistic is smaller
than α and fail to reject otherwise

◮ Using p-value or rejection region ideas are completely
equivalent

General Model Descriptors

◮ Before discussing variable selection algorithms it is useful to
know a few descriptors used for very large models:

Maximal Model Contains all explanatory variables that may be of interest
Most complicated model to consider
Many terms likely to be insignificant

Minimal Adequate Likely a simplified model with less terms than the maximal
Model All terms significantly improve the model fit

Null Model A single parameter, i.e. intercept only
Equivalent to having using mean y = ȳ

Usually, not a good fit and no explanatory power

◮ Maximal and null models are useful benchmarks with which to
judge the performance of others

◮ Note: in general there isn’t a unique minimal adequate model



Variable Selection Algorithms

◮ Aim of model variable selection is to find the minimal

adequate model in an efficient manner

◮ Essentially, these algorithms try to avoid fitting all 2p possible
models, by building models (or deconstructing them!) in a
hierarchical fashion (one term at a time)

◮ There are many statistical procedures to accomplish this, but
here we will consider the three most commonly used:

◮ Namely: forward, backward and stepwise selection

◮ We will also discuss some of the key pitfalls/dangers with
using these algorithms (they are very controversial)3

◮ Main piece of advice: NEVER solely rely on these

algorithms and always validate the chosen model with

subject matter expertise

3See Wikipedia on “stepwise regression”

Forward Selection

◮ Forward selection algorithm:

1. Start with the null model (first restricted model)
2. Create list of all new potential explanatory variables

3. For each of these variables in turn, add only this variable to
give a new unrestricted model

4. Evaluate the performance gain of each new unrestricted
model separately using the above F -test statistic (or similar
performance statistic)

5a If all the F -tests are insignificant (e.g. p > 0.05) then retain
the restricted model and STOP, this gives the minimal

adequate model

5b Otherwise, add the single variable that has the largest F -test
statistic and goto step 6

6 Start the process again at step 2, with the significant variable
from step 5 added to the restricted model

◮ No terms are dropped from the model during forward model
selection

Backward Selection

◮ Backward selection algorithm:

1. Start with the maximal model (first unrestricted model)
2. Create list of all potentially removable explanatory

variables

3. For each of these variables in turn, remove only this variable to
give a new restricted model

4. Evaluate the performance drop of each new restricted model
separately using the above F -test statistic (or similar
performance statistic)

5a If all the F -tests are significant (e.g. p < 0.05) then retain the
unrestricted model and STOP, this gives the minimal

adequate model

5b Otherwise, add the single variable that has the smallest F -test
statistic and goto step 6

6 Start the process again at step 2, with the least useful variable
from step 5 removed from the unrestricted model

◮ No terms are added to the model during backward model
selection

Stepwise Selection

◮ Stepwise selection is essentially a combination of the forward
and backward procedures.

◮ Stepwise is essentially forward selection, but each “entry
step” is immediately followed by a ”deletion step”

◮ Deletion step re-evaluates variables entered at previous steps

◮ If all the variables in the current model significantly improve
the fit, then none are deleted

◮ The procedure is stopped when no new variables can
significantly improve the model fit

◮ The reason for considering a Deletion Step is that a variable
that may have been useful at an early stage in the model build
may be superfluous at a later stage after further variables
have entered (may be duplication of explanatory information)

◮ Generally, the significance levels for the entry and deletion
steps are the same

◮ Condition to prevent infinite loops are needed



General Comments

◮ Don’t use selection algorithms unless you have to!

◮ Stepwise selection is generally preferred

◮ Worthwhile trying all approaches you have available

◮ If considering a polynomial model of order p, then usually best
to retain the terms of lower order

◮ Further, if the investigator knows that a certain variable is
physically important for prediction then generally this variable
should be included in the model (even if the F -test indicates
it is not important)

◮ Physical relevance generally overrides statistical significance

◮ Clearly, a lot of hypothesis tests are being carried out in
variable selection algorithms (called “multiple testing”
problem)

◮ Therefore, there is a very high probability of making at least
one Type I error (including some irrelevant variables) or Type
II error (not including important variables)

Further General Comments

Some of the problems attributed with selection algorithms:

◮ Generally model selection is ignored, so multiple testing
effects and degrees of freedom used are ignored;

◮ Essentially there will be more uncertainty in our model, than
suggested if we ignore model selection stage

◮ Performance measures like R2 values will be biased to be high;

◮ Confidence intervals for coefficients and predictions are falsely
narrow;

◮ They have severe problems in the presence of multicollinearity
(we’ll come to that next)

General advice: always validate the physical validity of the

chosen model using subject matter expertise

Multicollinearity in Regression

◮ In the ideal world all explanatory variables would be
uncorrelated with each other (each one then spans an
orthogonal dimension in the explanatory vector space)

◮ Then it is possible to interpret each coefficient on their own,
whilst keeping all the other variables fixed

◮ In real world applications this is rarely the case and we have
some level of “multicollinearity” between the explanatory
variables (see correlation between Hardness and Tensile
Strength in Abrasion example)

◮ Essentially there is an overlap in the linear information
content of two or more variables (i.e. two or more explanatory
vectors span similar dimensions)

◮ The presence of multi-collinearity complicates interpretation,
analysis and fitting of models

Multicollinearity in Regression

◮ Firstly, it is impossible to disentangle the relative contributions
of effects of collinear variables on the response variable

◮ Therefore, the coefficients for collinear terms will be related
and cannot be interpreted on their own

◮ Common to see inappropriate signs of coefficients (i.e.
suggesting effect of explanatory variable is opposite to reality)

◮ Uncertainty estimates (e.g. confidence intervals) are much
higher for collinear variables, as effects cannot be disentangled
they are very uncertain

◮ Dependence causes problems for model selection algorithms

◮ Extremely highly collinear variables can make design matrix
ill-conditioned (due to linear dependence in columns) making
evaluation of matrix inverse (X′X)−1 numerically unstable



Multicollinearity - The Good News

◮ Despite all these problems there is some good news...

◮ Provided you are only interested in predictions, and not trying
to interpret individual coefficients in model, then you don’t
have to do anything (as long as matrix inverse (X′X)−1

exists!) as the predictions are unaffected by multicollinearity

Multicollinearity - How to Avoid or Ameliorate?

◮ Multicollinearity is sometimes avoided by screening variables
before modelling commences using subject matter expertise

◮ Generally, drop the least important collinear variable

◮ Mean correction of the explanatory variables (particular power
terms, x , x2, x3, . . .) can substantially aid in the numerical
conditioning

◮ There are various approaches to avoid or ameliorate the
effects of multicollinearity, e.g. ridge regression or principal
component analysis, but these are beyond the scope of this
course

◮ If the collinearity is between just two variables, then this can
be highlighted using the correlation matrix between all the
explanatory variables

◮ But if the collinearity is between three or more variables then
alternative statistics, e.g. variation inflation factors (VIF), can
be used but these are beyond the scope of this course4

4See Wikipedia on “Multicollinearity”

Example: Alloy Thickness Data

◮ Article investigating metal deposition using electroplating:
Conklin (June, 2009) 3.4 per million: It’s a Marathon, Not a

Sprint, Quality Process Journal

◮ An alloy is layered onto a metal substrate in an acid bath

◮ For simplicity, assume a single layer is applied

◮ The key output (response variable) is thickness of the deposit.
A minimum thickness is required to ensure the performance.

◮ A team of engineers and technicians is studying the process,
with the goals of reducing variation and fine tuning the key
input levels for best effect.

◮ The key inputs (explanatory variables) are:
◮ Catalyst - acid bath catalyst concentration;
◮ pH - acid bath pH level;
◮ Pressure - pressure in the acid bath tank;
◮ Temperature - temperature in the acid bath; and
◮ Voltage - voltage applied.

Example: Alloy Thickness Matrix Plot

>> plotmatrix(data)

>> title(’Matrix plot of Alloy Thickness, Catalyst, pH,

Pressure, Temperature and Voltage’)



Example: Alloy Thickness Correlation Matrix

>> corr(data)

Example: Alloy Thickness Subjective Impression

◮ There is a strong positive linear association between Voltage

and Thickness

◮ There is a moderate positive linear association between
Catalyst concentration and Thickness

◮ There is a weak (positive/negative) linear association between
pH/Temperature and Thickness

◮ There is essentially no association between Pressure and
Thickness

◮ There is very little association between the explanatory
variables

◮ So we expect no issues associated with multicollinearity
◮ Sample data provide good coverage across range of sensible

values
◮ Observation study - data collected whilst in operation, so

explanatory variable values are not fixed
◮ Hence observation resampling relevant bootstrap approach here

Example: Alloy Thickness Stepwise Selection

◮ Easy to do stepwise selection in MATLAB

>> [B,SE,PVAL,INMODEL,STATS,NEXTSTEP,HISTORY]=stepwisefit(data(:,2:end),data(:,1))

◮ Note: data(:,2:end) matrix has only explanatory variables, not
columns of ones for intercept

◮ data(:,1) is response data vector

◮ There are lots of options for outputs and inputs, see doc
stepwisefit

◮ Commonly used input options are:
◮ penter - significance level for entry step
◮ premove - significance level for deletion step

◮ which are set to 5% below:

>> [B,SE,PVAL,INMODEL,STATS,NEXTSTEP,HISTORY]=stepwisefit(data(:,2:end),data(:,1),

’penter’,0.05,’premove’,0.05);

Example: Alloy Thickness Stepwise MATLAB Output 1

◮ Default display output is then:

◮ Step 0: Start with null model (intercept/mean only)

◮ Step 1 Entry: Column 5 (Voltage) entered with p = 3.2e − 13 < 5%

◮ Step 2 Entry: Column 4 (Temperature) entered with p = 1.3e − 6 < 5%

◮ Step 2 Deletion: None have p > 5%

◮ Step 3 Entry: Column 1 (Catalyst) entered with p = 0.00083 < 5%

◮ Step 3 Deletion: None have p > 5%



Example: Alloy Thickness Stepwise MATLAB Output 2

◮ Default display output is then:

◮ Step 4 Entry: Column 3 (Pressure) entered with p = 0.0032 < 5%

◮ Step 4 Deletion: None have p > 5%

◮ Step 5 Entry: Remaining term has p = 0.286 > 5% so “minimal

adequate model” found at Step 4:

y = β0 + β1Voltage + β2Temperature + β3Catalyst + β4Pressure + ǫ

Example: Alloy Thickness Stepwise MATLAB Output 3
◮ Default display output is then:

◮ Lower table gives summary of minimal adequate model
◮ First column gives coefficients:

y = β0+0.4288Voltage−0.4036Temperature+0.1548Catalyst−0.0420Pressure+ǫ

◮ Also gives coefficients if non-included term(s) were entered individually:

y = β0 +β1Voltage+β2Temperature+β3Catalyst+β4Pressure+0.0864pH + ǫ

◮ Notice: other coefficients will generally change due to dependence
(correlation) between them:

y = 4.4543 + 0.4224Voltage − 0.4026Temperature + 0.1627Catalyst

− 0.0431Pressure + 0.0864pH + ǫ

Example: Alloy Thickness Stepwise MATLAB Output 4

◮ Default display output is then:

◮ Standard error (square root of variance) given in second column

◮ Third column gives In/Out status

◮ Last column is p-value for testing null hypothesis H0 : βi ≤ 0 (or βi ≥ 0
whichever is relevant) under final model

◮ Notice: p-value different to entry/deletion p-value

◮ Output p-value assumes normal errors, you will calculate this again using
bootstrap without normal assumption

◮ Other outputs (STATS, NEXTSTEP and HISTORY) not relevant in this course

Example: Alloy Thickness Minimal Adequate Model

◮ Now go back to using regress function to fit final model:

>> y=data(:,1);

>> X=[ones(size(data,1),1) data(:,[6 5 2 4])];

>> [B,BINT,R,RINT,STATS] = regress(y,X);

◮ which gives:

y = 3.6833+0.4288Voltage−0.4036Temperature+0.1548Catalyst−0.0420Pressure+ǫ

◮ Final R2 = 87.3% (compared to R2 = 87.6% if pH also
included)

◮ So little drop in performance from ignoring pH



Example: Alloy Thickness Bootstrapped Coefficients

◮ Now go back to using regress function to fit final model:

◮ It is clear that bootstrap coefficients are well away from zero,
so expect p-values (under null hypothesis) to be close to zero

Example: Alloy Thickness Bootstrap p-values

◮ Calculating the p-values for each of the 5 coefficients:

◮ So p-values are pintercept = 0.29, pvoltage < 1e − 5,
ptemperature < 1e − 5, pcatalyst < 1e − 5 and ppressure = 0.0023

◮ As expected the p-values are all less than 5% significance level
(else they would have been dropped during Step 4 Deletion)

◮ Notice these are very similar to last column of stepwisefit
results, which assume normally distributed errors

Example: Alloy Thickness Regression Diagnostics

◮ OLS assumptions look fine, except possibly quadratic with
Pressure may be needed

Example: Alloy Thickness Model Performance

◮ Adjusted-R2 = 86.1% (compared to adjusted-R2 = 86.2% if
pH also included)

◮ So adjusted-R2 suggest pH could be included, but only very
slight improvement

◮ Leave-one-out cross-validation MSE for final model is 1.89
(compared to 1.88 if pH also included)

◮ What does this mean?

◮ The choice of F -test statistic for deciding which variables to
include in model influences which variables are chosen

◮ Different model choice statistics can lead to different results

◮ So try out all available statistics in package (MATLAB is limited
as it only allows F -test) you are using for model fitting.



Further General Comments

◮ These model selection algorithms are not failsafe

◮ There is no guarantee they give “best model” overall

◮ Always try range of the model selection procedures, and look
for consistency in the results and where the differences lie

◮ Only use these algorithms when you have to, i.e. when
you have a huge number of explanatory variables

◮ There are a lot of subjective choices (i.e. test statistic,
significance level, algorithm) required in model building, all of
which can influence the final results; so be careful!

◮ Always have in mind the physical sensibility of the model and
it’s proposed application

◮ Remember: there is a big difference between physical
significance and statistical significance


